Skip to main content

Lab 3: Isaac Sim Simple Robot Simulation

Objective

In this lab, you will create a simple robot simulation in NVIDIA Isaac Sim, learn to configure physics properties, implement basic control systems, and integrate with ROS 2. You will understand how to leverage Isaac Sim's high-fidelity physics and rendering for humanoid robotics development.

Prerequisites

  • NVIDIA Isaac Sim installed (Omniverse environment)
  • Python 3.8+ environment
  • Basic knowledge of USD (Universal Scene Description)
  • Understanding of ROS 2 concepts (optional but helpful)

Learning Outcomes

By the end of this lab, you will be able to:

  1. Set up and configure Isaac Sim for robot simulation
  2. Create a simple robot using USD and Isaac Sim APIs
  3. Configure physics properties and materials
  4. Implement basic robot control systems
  5. Integrate with ROS 2 for communication
  6. Generate synthetic sensor data for AI training

Step 1: Setting Up Isaac Sim Environment

First, let's create a Python script to initialize Isaac Sim and set up the basic environment. Create a file called simple_robot_sim.py:

import omni
import omni.kit.app
from omni.isaac.core import World
from omni.isaac.core.utils.stage import add_reference_to_stage, get_stage_units
from omni.isaac.core.utils.nucleus import get_assets_root_path
from omni.isaac.core.utils.prims import get_prim_at_path
from omni.isaac.core.utils.stage import set_stage_units
from omni.isaac.core.utils import viewports
from pxr import Gf, Sdf, UsdGeom
import numpy as np
import carb

def setup_isaac_sim():
"""Initialize Isaac Sim and configure basic settings"""

# Set stage units to meters
set_stage_units(1.0) # 1 unit = 1 meter

# Get world instance
world = World(stage_units_in_meters=1.0)

# Add ground plane
world.scene.add_default_ground_plane()

return world

def configure_physics():
"""Configure physics settings for the simulation"""
# Get physics scene settings
physics_settings = carb.settings.get_settings()

# Set physics parameters
physics_settings.set("/physics/solverPositionIterationCount", 8)
physics_settings.set("/physics/solverVelocityIterationCount", 1)
physics_settings.set("/physics/timeStepsPerSecond", 60) # 60 Hz physics update
physics_settings.set("/physics/maxSubSteps", 1)

# Set gravity
UsdGeom.SetStageMetersPerUnit(omni.usd.get_context().get_stage(), 1.0)

def create_simple_robot(world):
"""Create a simple wheeled robot in Isaac Sim"""
from omni.isaac.core.robots import Robot
from omni.isaac.core.prims import RigidPrim, XFormPrim
from omni.isaac.core.utils.prims import create_primitive
from omni.isaac.core.utils.stage import add_reference_to_stage

# Create robot root
robot_root_path = "/World/MyRobot"
robot_xform = XFormPrim(prim_path=robot_root_path, name="my_robot")

# Create robot body (chassis)
chassis_path = f"{robot_root_path}/Chassis"
create_primitive(
prim_path=chassis_path,
primitive_type="Cuboid",
position=np.array([0, 0, 0.2]),
orientation=np.array([0, 0, 0, 1]),
scale=np.array([0.5, 0.3, 0.15]),
color=np.array([0.1, 0.1, 0.8])
)

# Create wheels
wheel_radius = 0.1
wheel_width = 0.05
wheel_positions = [
[0.2, 0.2, 0.1], # front right
[0.2, -0.2, 0.1], # front left
[-0.2, 0.2, 0.1], # back right
[-0.2, -0.2, 0.1] # back left
]

for i, pos in enumerate(wheel_positions):
wheel_path = f"{robot_root_path}/Wheel_{i}"
create_primitive(
prim_path=wheel_path,
primitive_type="Cylinder",
position=pos,
orientation=np.array([0, 0, 0, 1]),
scale=np.array([wheel_radius, wheel_width, wheel_radius]),
color=np.array([0.2, 0.2, 0.2])
)

# Add rigid body properties to chassis
from omni.physx.scripts import physicsUtils

stage = omni.usd.get_context().get_stage()
chassis_prim = stage.GetPrimAtPath(chassis_path)

# Set mass properties
physicsUtils.setMass(chassis_prim, mass=2.0)

return robot_root_path

def main():
"""Main function to run the simulation"""
print("Setting up Isaac Sim environment...")

# Initialize Isaac Sim
world = setup_isaac_sim()
configure_physics()

# Create simple robot
robot_path = create_simple_robot(world)

# Reset the world to apply all changes
world.reset()

print("Robot created successfully!")
print("Robot path:", robot_path)

# Run simulation for a few steps to see the robot
for i in range(100):
world.step(render=True)
if i % 20 == 0:
print(f"Simulation step {i}")

print("Simulation completed.")

if __name__ == "__main__":
main()

Step 2: Creating a More Complex Humanoid Robot

Now let's create a more complex humanoid robot. Create a file called humanoid_robot.py:

import omni
from omni.isaac.core import World
from omni.isaac.core.utils.stage import set_stage_units
from omni.isaac.core.utils.prims import create_prim, get_prim_at_path
from omni.isaac.core.utils.stage import add_reference_to_stage
from omni.isaac.core.utils import nucleus
from pxr import Gf, Sdf, UsdGeom, UsdPhysics, PhysxSchema
import numpy as np
from omni.isaac.core.articulations import Articulation
from omni.isaac.core.utils.semantics import add_update_semantics

class HumanoidRobot(Articulation):
def __init__(
self,
prim_path: str,
name: str = "humanoid_robot",
usd_path: str = None,
position: np.ndarray = np.array([0, 0, 1.0]),
orientation: np.ndarray = np.array([0, 0, 0, 1]),
) -> None:
"""Initialize a simple humanoid robot"""

self._stage = omni.usd.get_context().get_stage()

# Create the root prim
self.create_humanoid_robot(prim_path, position, orientation)

super().__init__(
prim_path=prim_path,
name=name,
)

def create_humanoid_robot(self, prim_path, position, orientation):
"""Create the humanoid robot structure"""

# Create root body (pelvis)
pelvis_path = f"{prim_path}/pelvis"
self.create_body_segment(
pelvis_path,
position=position,
size=[0.2, 0.25, 0.15],
mass=5.0
)

# Create torso
torso_path = f"{prim_path}/torso"
self.create_body_segment(
torso_path,
position=[position[0], position[1], position[2] + 0.25],
size=[0.2, 0.3, 0.15],
mass=10.0
)

# Create head
head_path = f"{prim_path}/head"
self.create_body_segment(
head_path,
position=[position[0], position[1], position[2] + 0.65],
size=[0.2, 0.2, 0.2],
mass=2.0,
shape="Sphere"
)

# Create left leg
self.create_leg(f"{prim_path}/left_leg", position, "left")

# Create right leg
self.create_leg(f"{prim_path}/right_leg", position, "right")

# Create left arm
self.create_arm(f"{prim_path}/left_arm", position, "left")

# Create right arm
self.create_arm(f"{prim_path}/right_arm", position, "right")

# Create joints to connect body parts
self.create_joints(prim_path)

def create_body_segment(self, prim_path, position, size, mass, shape="Box"):
"""Create a body segment (box or sphere)"""
from omni.isaac.core.utils.prims import create_primitive

if shape == "Box":
create_primitive(
prim_path=prim_path,
primitive_type="Cuboid",
position=position,
scale=size,
color=np.array([0.1, 0.1, 0.8]) if "torso" in prim_path else
np.array([0.8, 0.2, 0.2]) if "leg" in prim_path else
np.array([0.8, 0.8, 0.8])
)
elif shape == "Sphere":
create_primitive(
prim_path=prim_path,
primitive_type="Sphere",
position=position,
scale=size,
color=np.array([0.8, 0.8, 0.8])
)

# Add rigid body properties
self.add_rigid_body(prim_path, mass)

def create_leg(self, leg_root_path, base_position, side):
"""Create a leg with hip, knee, and ankle joints"""
offset_x = 0.1 if side == "right" else -0.1

# Upper leg (thigh)
thigh_path = f"{leg_root_path}/upper_leg"
self.create_body_segment(
thigh_path,
position=[base_position[0] + offset_x, base_position[1], base_position[2] - 0.1],
size=[0.08, 0.08, 0.3],
mass=3.0
)

# Lower leg (shin)
shin_path = f"{leg_root_path}/lower_leg"
self.create_body_segment(
shin_path,
position=[base_position[0] + offset_x, base_position[1], base_position[2] - 0.4],
size=[0.07, 0.07, 0.3],
mass=2.5
)

# Foot
foot_path = f"{leg_root_path}/foot"
self.create_body_segment(
foot_path,
position=[base_position[0] + offset_x, base_position[1], base_position[2] - 0.65],
size=[0.15, 0.08, 0.06],
mass=1.0
)

def create_arm(self, arm_root_path, base_position, side):
"""Create an arm with shoulder, elbow joints"""
offset_x = 0.25 if side == "right" else -0.25
offset_y = 0.3 if side == "right" else -0.3

# Upper arm
upper_arm_path = f"{arm_root_path}/upper_arm"
self.create_body_segment(
upper_arm_path,
position=[base_position[0] + offset_x, base_position[1] + offset_y, base_position[2] + 0.4],
size=[0.06, 0.06, 0.25],
mass=1.5
)

# Lower arm
lower_arm_path = f"{arm_root_path}/lower_arm"
self.create_body_segment(
lower_arm_path,
position=[base_position[0] + offset_x, base_position[1] + offset_y, base_position[2] + 0.15],
size=[0.05, 0.05, 0.25],
mass=1.0
)

def add_rigid_body(self, prim_path, mass):
"""Add rigid body properties to a prim"""
from omni.physx.scripts import physicsUtils

prim = self._stage.GetPrimAtPath(prim_path)
if prim.IsValid():
# Set mass
physicsUtils.setMass(prim, mass)

# Set other physics properties
UsdPhysics.MassAPI.Apply(prim)

def create_joints(self, robot_path):
"""Create joints to connect body parts"""
# This is a simplified version - in a real implementation you'd create actual joints
# For now, we'll just ensure the parts are properly connected in the scene graph
pass

def setup_humanoid_simulation():
"""Set up the Isaac Sim environment with a humanoid robot"""
# Set stage units
set_stage_units(1.0)

# Get world instance
world = World(stage_units_in_meters=1.0)

# Add ground plane
world.scene.add_default_ground_plane()

# Create humanoid robot
robot = HumanoidRobot(
prim_path="/World/MyHumanoid",
name="my_humanoid"
)

# Add robot to world
world.scene.add(robot)

return world, robot

def main():
"""Main function to run the humanoid simulation"""
print("Setting up Isaac Sim with humanoid robot...")

# Initialize simulation
world, robot = setup_humanoid_simulation()

# Reset the world
world.reset()

print("Humanoid robot created successfully!")

# Run simulation for a few steps
for i in range(200):
world.step(render=True)

if i % 50 == 0:
print(f"Simulation step {i}")

# Print robot state
joint_positions = robot.get_joints_state().positions
print(f"Joint positions: {len(joint_positions)} joints")

print("Simulation completed.")

if __name__ == "__main__":
main()

Step 3: Adding Physics and Control

Create a more advanced script with physics and control called humanoid_control.py:

import omni
from omni.isaac.core import World
from omni.isaac.core.utils.stage import set_stage_units
from omni.isaac.core.utils.prims import get_prim_at_path
from omni.isaac.core.utils.stage import add_reference_to_stage
from pxr import Gf, Sdf, UsdGeom, UsdPhysics, PhysxSchema
import numpy as np
from omni.isaac.core.articulations import Articulation
from omni.isaac.core.utils.viewports import set_camera_view
from omni.isaac.sensor import Camera
from omni.isaac.core.utils.semantics import add_update_semantics

class HumanoidController:
def __init__(self, world, robot):
self.world = world
self.robot = robot
self.joint_names = [
"left_hip_joint", "left_knee_joint", "left_ankle_joint",
"right_hip_joint", "right_knee_joint", "right_ankle_joint",
"left_shoulder_joint", "left_elbow_joint",
"right_shoulder_joint", "right_elbow_joint"
]

# Initialize joint controllers
self.setup_joint_control()

def setup_joint_control(self):
"""Setup joint control parameters"""
# For this example, we'll use simple position control
# In a real implementation, you would configure PID controllers
pass

def move_to_position(self, joint_positions):
"""Move robot joints to specified positions"""
# Set joint positions
self.robot.set_joints_state(positions=np.array(joint_positions))

def get_robot_state(self):
"""Get current robot state"""
joint_state = self.robot.get_joints_state()
return {
'positions': joint_state.positions,
'velocities': joint_state.velocities,
'efforts': joint_state efforts if available else None
}

def simple_walk_cycle(self, phase):
"""Generate simple walking pattern based on phase"""
# Simplified walking gait - in reality this would be much more complex
positions = []

# Left leg (swing phase when right is stance)
positions.append(np.sin(phase) * 0.3) # left_hip
positions.append(np.sin(phase + 0.5) * 0.5) # left_knee
positions.append(np.sin(phase - 0.2) * 0.1) # left_ankle

# Right leg (stance phase when left is swing)
positions.append(np.sin(phase + np.pi) * 0.3) # right_hip
positions.append(np.sin(phase + np.pi + 0.5) * 0.5) # right_knee
positions.append(np.sin(phase + np.pi - 0.2) * 0.1) # right_ankle

# Arms (counterbalance)
positions.append(np.sin(phase + np.pi) * 0.2) # left_shoulder
positions.append(np.sin(phase) * 0.1) # left_elbow
positions.append(np.sin(phase) * 0.2) # right_shoulder
positions.append(np.sin(phase + np.pi) * 0.1) # right_elbow

return positions

def setup_advanced_simulation():
"""Set up Isaac Sim with advanced features"""
# Set stage units
set_stage_units(1.0)

# Get world instance
world = World(stage_units_in_meters=1.0)

# Add ground plane with texture
world.scene.add_default_ground_plane(
static_friction=0.5,
dynamic_friction=0.5,
restitution=0.1
)

# Set up camera view
set_camera_view(eye=[2, 2, 1.5], target=[0, 0, 0.8])

# Create a simple humanoid (using a pre-built asset for this example)
# In a real scenario, you might load a more complex robot
asset_root_path = nucleus.get_assets_root_path()
if asset_root_path is None:
print("Could not find Isaac Sim assets. Using simple cube robot.")

# Create a simple robot using basic shapes
robot_path = "/World/SimpleRobot"
add_reference_to_stage(
usd_path="realsense_camera.usd", # This is just an example
prim_path=robot_path
)
else:
# Try to load a basic robot if available
robot_path = "/World/Robot"
try:
add_reference_to_stage(
usd_path=asset_root_path + "/Isaac/Robots/Franka/franka_instanceable.usd",
prim_path=robot_path
)
except:
print("Could not load Franka robot, creating simple robot instead")
# Create simple robot using basic shapes
create_simple_robot_shapes(robot_path)

# Add sensors
camera = Camera(
prim_path="/World/Camera",
position=np.array([1.5, 1.5, 1.0]),
frequency=30,
resolution=(640, 480)
)
world.scene.add(camera)

return world

def create_simple_robot_shapes(robot_path):
"""Create a simple robot using basic shapes"""
from omni.isaac.core.utils.prims import create_primitive

# Create base body
create_primitive(
prim_path=robot_path + "/base",
primitive_type="Cuboid",
position=np.array([0, 0, 0.5]),
scale=np.array([0.3, 0.3, 0.3]),
color=np.array([0.1, 0.1, 0.8])
)

def main():
"""Main function to run the advanced simulation"""
print("Setting up advanced Isaac Sim environment...")

# Initialize simulation
world = setup_advanced_simulation()

# Reset the world
world.reset()

print("Advanced simulation setup complete!")

# Initialize controller
controller = HumanoidController(world, None) # We'll use a different approach for the robot

# Run simulation with control loop
phase = 0
for i in range(600): # Run for 10 seconds at 60 FPS
world.step(render=True)

# Update walking pattern every few steps
if i % 3 == 0:
phase += 0.1
target_positions = controller.simple_walk_cycle(phase)
# In a real implementation, you would apply these positions to the robot

if i % 60 == 0: # Print every second
print(f"Simulation time: {i/60:.1f}s")

print("Advanced simulation completed.")

if __name__ == "__main__":
main()

Step 4: Creating a ROS 2 Bridge Example

Create a ROS 2 bridge script called isaac_sim_ros_bridge.py:

import rclpy
from rclpy.node import Node
from sensor_msgs.msg import JointState, Image, Imu
from geometry_msgs.msg import Twist, Vector3
from std_msgs.msg import Float64MultiArray
from builtin_interfaces.msg import Time
import numpy as np
import threading
import time

class IsaacSimROSBridge(Node):
def __init__(self):
super().__init__('isaac_sim_ros_bridge')

# Publishers for sensor data from Isaac Sim
self.joint_state_publisher = self.create_publisher(
JointState,
'/joint_states',
10
)

self.imu_publisher = self.create_publisher(
Imu,
'/imu/data',
10
)

# Subscribers for commands to Isaac Sim
self.joint_cmd_subscriber = self.create_subscription(
Float64MultiArray,
'/joint_group_position_controller/command',
self.joint_cmd_callback,
10
)

self.cmd_vel_subscriber = self.create_subscription(
Twist,
'/cmd_vel',
self.cmd_vel_callback,
10
)

# Timer for publishing sensor data
self.timer = self.create_timer(0.1, self.publish_sensor_data)

# Robot state
self.current_joint_positions = [0.0] * 10
self.current_joint_velocities = [0.0] * 10
self.robot_pose = [0.0, 0.0, 0.0] # x, y, theta

# Lock for thread safety
self.state_lock = threading.Lock()

self.get_logger().info('Isaac Sim ROS Bridge initialized')

def joint_cmd_callback(self, msg):
"""Handle joint position commands from ROS"""
with self.state_lock:
if len(msg.data) == len(self.current_joint_positions):
self.current_joint_positions = list(msg.data)
self.get_logger().debug(f'Received joint commands: {self.current_joint_positions}')

def cmd_vel_callback(self, msg):
"""Handle velocity commands from ROS"""
# In a real implementation, this would control the robot in Isaac Sim
self.get_logger().info(f'Received velocity command: linear={msg.linear}, angular={msg.angular}')

# Update robot pose based on velocity (simplified)
dt = 0.1 # Time step
with self.state_lock:
self.robot_pose[0] += msg.linear.x * dt
self.robot_pose[1] += msg.linear.y * dt if hasattr(msg.linear, 'y') else 0.0
self.robot_pose[2] += msg.angular.z * dt

def publish_sensor_data(self):
"""Publish sensor data to ROS"""
# Publish joint states
joint_state_msg = JointState()
joint_state_msg.header.stamp = self.get_clock().now().to_msg()
joint_state_msg.header.frame_id = 'base_link'
joint_state_msg.name = [
'left_hip_joint', 'left_knee_joint', 'left_ankle_joint',
'right_hip_joint', 'right_knee_joint', 'right_ankle_joint',
'left_shoulder_joint', 'left_elbow_joint',
'right_shoulder_joint', 'right_elbow_joint'
]

with self.state_lock:
joint_state_msg.position = self.current_joint_positions.copy()
joint_state_msg.velocity = self.current_joint_velocities.copy()
joint_state_msg.effort = [0.0] * len(self.current_joint_positions)

self.joint_state_publisher.publish(joint_state_msg)

# Publish IMU data (simulated)
imu_msg = Imu()
imu_msg.header.stamp = self.get_clock().now().to_msg()
imu_msg.header.frame_id = 'imu_link'

# Simulated orientation (level for now)
imu_msg.orientation.w = 1.0
imu_msg.orientation.x = 0.0
imu_msg.orientation.y = 0.0
imu_msg.orientation.z = 0.0

# Simulated angular velocity
imu_msg.angular_velocity = Vector3(x=0.0, y=0.0, z=0.0)

# Simulated linear acceleration (gravity + movement)
imu_msg.linear_acceleration = Vector3(x=0.0, y=0.0, z=9.81)

self.imu_publisher.publish(imu_msg)

def main(args=None):
rclpy.init(args=args)

bridge = IsaacSimROSBridge()

try:
rclpy.spin(bridge)
except KeyboardInterrupt:
pass
finally:
bridge.destroy_node()
rclpy.shutdown()

if __name__ == '__main__':
main()

Step 5: Creating a Complete Simulation Example

Create a comprehensive simulation script called complete_humanoid_sim.py:

import omni
from omni.isaac.core import World
from omni.isaac.core.utils.stage import set_stage_units
from omni.isaac.core.utils.viewports import set_camera_view
from omni.isaac.core.utils.nucleus import get_assets_root_path
from omni.isaac.core.utils.stage import add_reference_to_stage
from omni.isaac.sensor import Camera
from omni.isaac.core.materials import PhysicsMaterial
import numpy as np
import asyncio
import carb

class CompleteHumanoidSim:
def __init__(self):
self.world = None
self.robot = None
self.camera = None
self.physics_material = None

def setup_environment(self):
"""Set up the complete simulation environment"""
# Set stage units to meters
set_stage_units(1.0)

# Get world instance
self.world = World(stage_units_in_meters=1.0)

# Configure physics
self.configure_physics()

# Add ground plane
self.world.scene.add_default_ground_plane(
static_friction=0.5,
dynamic_friction=0.5,
restitution=0.1
)

# Set up camera
self.setup_camera()

# Load robot (using a pre-built asset if available)
self.load_robot()

# Create physics materials
self.create_physics_materials()

# Set camera view
set_camera_view(eye=[2.5, 2.5, 1.5], target=[0, 0, 0.8])

def configure_physics(self):
"""Configure physics settings"""
physics_settings = carb.settings.get_settings()
physics_settings.set("/physics/solverPositionIterationCount", 8)
physics_settings.set("/physics/solverVelocityIterationCount", 1)
physics_settings.set("/physics/timeStepsPerSecond", 120) # Higher frequency for better stability
physics_settings.set("/physics/maxSubSteps", 2)

def setup_camera(self):
"""Set up camera for the simulation"""
self.camera = Camera(
prim_path="/World/Camera",
position=np.array([2.5, 2.5, 1.5]),
frequency=30,
resolution=(640, 480)
)
self.world.scene.add(self.camera)

def load_robot(self):
"""Load robot asset"""
asset_root_path = get_assets_root_path()

if asset_root_path is not None:
# Try to load a humanoid robot if available in the assets
robot_path = "/World/Robot"
try:
add_reference_to_stage(
usd_path=asset_root_path + "/Isaac/Robots/Humanoid/humanoid_instanceable.usd",
prim_path=robot_path
)
print("Loaded humanoid robot from assets")
except:
print("Could not load humanoid robot from assets, using simple setup")
# For this example, we'll proceed with a basic setup
else:
print("Could not find Isaac Sim assets, using basic setup")

def create_physics_materials(self):
"""Create physics materials for different surfaces"""
self.physics_material = PhysicsMaterial(
prim_path="/World/Looks/robot_material",
static_friction=0.5,
dynamic_friction=0.5,
restitution=0.1
)

def run_simulation(self, duration=10.0):
"""Run the simulation for a specified duration"""
# Reset the world
self.world.reset()

print(f"Starting simulation for {duration} seconds...")

# Calculate number of steps (assuming 60 FPS rendering)
steps = int(duration * 60)

for i in range(steps):
# Step the physics simulation
self.world.step(render=True)

# Occasionally print progress
if i % 600 == 0: # Every 10 seconds of sim time
elapsed_time = i / 60.0
print(f"Simulation time: {elapsed_time:.1f}s")

# Example: Move robot periodically (this would be controlled by external commands in real use)
if i % 60 == 0: # Every second
self.execute_behavior()

print("Simulation completed.")

def execute_behavior(self):
"""Execute a simple behavior (e.g., move joints)"""
# This is a placeholder for more complex behaviors
# In a real implementation, this would interface with control algorithms
pass

def main():
"""Main function to run the complete simulation"""
print("Setting up complete Isaac Sim humanoid environment...")

sim = CompleteHumanoidSim()
sim.setup_environment()
sim.run_simulation(duration=10.0)

if __name__ == "__main__":
main()

Step 6: Running the Simulation

To run these simulations in Isaac Sim:

  1. Start Isaac Sim using the Omniverse App Launcher or directly

  2. Open the Isaac Sim application

  3. Run the Python scripts from within Isaac Sim's scripting environment:

    • Go to Window → Script Editor
    • Copy and paste the code into the editor
    • Run the script
  4. Alternatively, run from command line if Isaac Sim Python API is available:

    python complete_humanoid_sim.py

Step 7: Testing and Validation

Basic Functionality Test

  1. Verify that the robot model loads correctly
  2. Check that physics simulation is stable
  3. Confirm that sensors are publishing data
  4. Test basic movement and control

Performance Testing

  1. Monitor simulation frame rate
  2. Check physics stability
  3. Validate sensor data quality
  4. Test with different robot configurations

Integration Testing

  1. Verify ROS 2 bridge functionality
  2. Test sensor data transmission
  3. Validate control command execution
  4. Check system stability over extended runs

Expected Results

After completing this lab, you should have:

  • A working Isaac Sim environment with a humanoid robot
  • Understanding of USD and Isaac Sim APIs
  • Basic control system implementation
  • ROS 2 integration for communication
  • Experience with sensor simulation and synthetic data generation

Troubleshooting

Common Issues and Solutions

  1. Physics Instability: Increase solver iterations or reduce time step
  2. Slow Performance: Simplify models or reduce physics complexity
  3. Asset Loading Errors: Verify Isaac Sim installation and asset paths
  4. ROS Connection Issues: Check network configuration and bridge setup

Performance Optimization Tips

  1. Use simplified collision geometry where possible
  2. Adjust physics parameters for your specific use case
  3. Limit the number of active sensors during development
  4. Use level-of-detail approaches for complex scenes

Extensions

Try these extensions to enhance your understanding:

  1. Implement more sophisticated control algorithms (PID, MPC)
  2. Add computer vision capabilities with synthetic data generation
  3. Create reinforcement learning environments
  4. Implement more realistic humanoid behaviors
  5. Add multiple robots to the simulation
  6. Integrate with perception and planning systems

Summary

In this lab, you've learned to create and control robots in NVIDIA Isaac Sim, leveraging its high-fidelity physics and rendering capabilities. You've explored USD scene description, implemented basic control systems, and integrated with ROS 2 for communication. Isaac Sim's capabilities for synthetic data generation and AI training make it a powerful tool for humanoid robotics development.