Lab 3: Isaac Sim Simple Robot Simulation
Objective
In this lab, you will create a simple robot simulation in NVIDIA Isaac Sim, learn to configure physics properties, implement basic control systems, and integrate with ROS 2. You will understand how to leverage Isaac Sim's high-fidelity physics and rendering for humanoid robotics development.
Prerequisites
- NVIDIA Isaac Sim installed (Omniverse environment)
- Python 3.8+ environment
- Basic knowledge of USD (Universal Scene Description)
- Understanding of ROS 2 concepts (optional but helpful)
Learning Outcomes
By the end of this lab, you will be able to:
- Set up and configure Isaac Sim for robot simulation
- Create a simple robot using USD and Isaac Sim APIs
- Configure physics properties and materials
- Implement basic robot control systems
- Integrate with ROS 2 for communication
- Generate synthetic sensor data for AI training
Step 1: Setting Up Isaac Sim Environment
First, let's create a Python script to initialize Isaac Sim and set up the basic environment. Create a file called simple_robot_sim.py:
import omni
import omni.kit.app
from omni.isaac.core import World
from omni.isaac.core.utils.stage import add_reference_to_stage, get_stage_units
from omni.isaac.core.utils.nucleus import get_assets_root_path
from omni.isaac.core.utils.prims import get_prim_at_path
from omni.isaac.core.utils.stage import set_stage_units
from omni.isaac.core.utils import viewports
from pxr import Gf, Sdf, UsdGeom
import numpy as np
import carb
def setup_isaac_sim():
"""Initialize Isaac Sim and configure basic settings"""
# Set stage units to meters
set_stage_units(1.0) # 1 unit = 1 meter
# Get world instance
world = World(stage_units_in_meters=1.0)
# Add ground plane
world.scene.add_default_ground_plane()
return world
def configure_physics():
"""Configure physics settings for the simulation"""
# Get physics scene settings
physics_settings = carb.settings.get_settings()
# Set physics parameters
physics_settings.set("/physics/solverPositionIterationCount", 8)
physics_settings.set("/physics/solverVelocityIterationCount", 1)
physics_settings.set("/physics/timeStepsPerSecond", 60) # 60 Hz physics update
physics_settings.set("/physics/maxSubSteps", 1)
# Set gravity
UsdGeom.SetStageMetersPerUnit(omni.usd.get_context().get_stage(), 1.0)
def create_simple_robot(world):
"""Create a simple wheeled robot in Isaac Sim"""
from omni.isaac.core.robots import Robot
from omni.isaac.core.prims import RigidPrim, XFormPrim
from omni.isaac.core.utils.prims import create_primitive
from omni.isaac.core.utils.stage import add_reference_to_stage
# Create robot root
robot_root_path = "/World/MyRobot"
robot_xform = XFormPrim(prim_path=robot_root_path, name="my_robot")
# Create robot body (chassis)
chassis_path = f"{robot_root_path}/Chassis"
create_primitive(
prim_path=chassis_path,
primitive_type="Cuboid",
position=np.array([0, 0, 0.2]),
orientation=np.array([0, 0, 0, 1]),
scale=np.array([0.5, 0.3, 0.15]),
color=np.array([0.1, 0.1, 0.8])
)
# Create wheels
wheel_radius = 0.1
wheel_width = 0.05
wheel_positions = [
[0.2, 0.2, 0.1], # front right
[0.2, -0.2, 0.1], # front left
[-0.2, 0.2, 0.1], # back right
[-0.2, -0.2, 0.1] # back left
]
for i, pos in enumerate(wheel_positions):
wheel_path = f"{robot_root_path}/Wheel_{i}"
create_primitive(
prim_path=wheel_path,
primitive_type="Cylinder",
position=pos,
orientation=np.array([0, 0, 0, 1]),
scale=np.array([wheel_radius, wheel_width, wheel_radius]),
color=np.array([0.2, 0.2, 0.2])
)
# Add rigid body properties to chassis
from omni.physx.scripts import physicsUtils
stage = omni.usd.get_context().get_stage()
chassis_prim = stage.GetPrimAtPath(chassis_path)
# Set mass properties
physicsUtils.setMass(chassis_prim, mass=2.0)
return robot_root_path
def main():
"""Main function to run the simulation"""
print("Setting up Isaac Sim environment...")
# Initialize Isaac Sim
world = setup_isaac_sim()
configure_physics()
# Create simple robot
robot_path = create_simple_robot(world)
# Reset the world to apply all changes
world.reset()
print("Robot created successfully!")
print("Robot path:", robot_path)
# Run simulation for a few steps to see the robot
for i in range(100):
world.step(render=True)
if i % 20 == 0:
print(f"Simulation step {i}")
print("Simulation completed.")
if __name__ == "__main__":
main()
Step 2: Creating a More Complex Humanoid Robot
Now let's create a more complex humanoid robot. Create a file called humanoid_robot.py:
import omni
from omni.isaac.core import World
from omni.isaac.core.utils.stage import set_stage_units
from omni.isaac.core.utils.prims import create_prim, get_prim_at_path
from omni.isaac.core.utils.stage import add_reference_to_stage
from omni.isaac.core.utils import nucleus
from pxr import Gf, Sdf, UsdGeom, UsdPhysics, PhysxSchema
import numpy as np
from omni.isaac.core.articulations import Articulation
from omni.isaac.core.utils.semantics import add_update_semantics
class HumanoidRobot(Articulation):
def __init__(
self,
prim_path: str,
name: str = "humanoid_robot",
usd_path: str = None,
position: np.ndarray = np.array([0, 0, 1.0]),
orientation: np.ndarray = np.array([0, 0, 0, 1]),
) -> None:
"""Initialize a simple humanoid robot"""
self._stage = omni.usd.get_context().get_stage()
# Create the root prim
self.create_humanoid_robot(prim_path, position, orientation)
super().__init__(
prim_path=prim_path,
name=name,
)
def create_humanoid_robot(self, prim_path, position, orientation):
"""Create the humanoid robot structure"""
# Create root body (pelvis)
pelvis_path = f"{prim_path}/pelvis"
self.create_body_segment(
pelvis_path,
position=position,
size=[0.2, 0.25, 0.15],
mass=5.0
)
# Create torso
torso_path = f"{prim_path}/torso"
self.create_body_segment(
torso_path,
position=[position[0], position[1], position[2] + 0.25],
size=[0.2, 0.3, 0.15],
mass=10.0
)
# Create head
head_path = f"{prim_path}/head"
self.create_body_segment(
head_path,
position=[position[0], position[1], position[2] + 0.65],
size=[0.2, 0.2, 0.2],
mass=2.0,
shape="Sphere"
)
# Create left leg
self.create_leg(f"{prim_path}/left_leg", position, "left")
# Create right leg
self.create_leg(f"{prim_path}/right_leg", position, "right")
# Create left arm
self.create_arm(f"{prim_path}/left_arm", position, "left")
# Create right arm
self.create_arm(f"{prim_path}/right_arm", position, "right")
# Create joints to connect body parts
self.create_joints(prim_path)
def create_body_segment(self, prim_path, position, size, mass, shape="Box"):
"""Create a body segment (box or sphere)"""
from omni.isaac.core.utils.prims import create_primitive
if shape == "Box":
create_primitive(
prim_path=prim_path,
primitive_type="Cuboid",
position=position,
scale=size,
color=np.array([0.1, 0.1, 0.8]) if "torso" in prim_path else
np.array([0.8, 0.2, 0.2]) if "leg" in prim_path else
np.array([0.8, 0.8, 0.8])
)
elif shape == "Sphere":
create_primitive(
prim_path=prim_path,
primitive_type="Sphere",
position=position,
scale=size,
color=np.array([0.8, 0.8, 0.8])
)
# Add rigid body properties
self.add_rigid_body(prim_path, mass)
def create_leg(self, leg_root_path, base_position, side):
"""Create a leg with hip, knee, and ankle joints"""
offset_x = 0.1 if side == "right" else -0.1
# Upper leg (thigh)
thigh_path = f"{leg_root_path}/upper_leg"
self.create_body_segment(
thigh_path,
position=[base_position[0] + offset_x, base_position[1], base_position[2] - 0.1],
size=[0.08, 0.08, 0.3],
mass=3.0
)
# Lower leg (shin)
shin_path = f"{leg_root_path}/lower_leg"
self.create_body_segment(
shin_path,
position=[base_position[0] + offset_x, base_position[1], base_position[2] - 0.4],
size=[0.07, 0.07, 0.3],
mass=2.5
)
# Foot
foot_path = f"{leg_root_path}/foot"
self.create_body_segment(
foot_path,
position=[base_position[0] + offset_x, base_position[1], base_position[2] - 0.65],
size=[0.15, 0.08, 0.06],
mass=1.0
)
def create_arm(self, arm_root_path, base_position, side):
"""Create an arm with shoulder, elbow joints"""
offset_x = 0.25 if side == "right" else -0.25
offset_y = 0.3 if side == "right" else -0.3
# Upper arm
upper_arm_path = f"{arm_root_path}/upper_arm"
self.create_body_segment(
upper_arm_path,
position=[base_position[0] + offset_x, base_position[1] + offset_y, base_position[2] + 0.4],
size=[0.06, 0.06, 0.25],
mass=1.5
)
# Lower arm
lower_arm_path = f"{arm_root_path}/lower_arm"
self.create_body_segment(
lower_arm_path,
position=[base_position[0] + offset_x, base_position[1] + offset_y, base_position[2] + 0.15],
size=[0.05, 0.05, 0.25],
mass=1.0
)
def add_rigid_body(self, prim_path, mass):
"""Add rigid body properties to a prim"""
from omni.physx.scripts import physicsUtils
prim = self._stage.GetPrimAtPath(prim_path)
if prim.IsValid():
# Set mass
physicsUtils.setMass(prim, mass)
# Set other physics properties
UsdPhysics.MassAPI.Apply(prim)
def create_joints(self, robot_path):
"""Create joints to connect body parts"""
# This is a simplified version - in a real implementation you'd create actual joints
# For now, we'll just ensure the parts are properly connected in the scene graph
pass
def setup_humanoid_simulation():
"""Set up the Isaac Sim environment with a humanoid robot"""
# Set stage units
set_stage_units(1.0)
# Get world instance
world = World(stage_units_in_meters=1.0)
# Add ground plane
world.scene.add_default_ground_plane()
# Create humanoid robot
robot = HumanoidRobot(
prim_path="/World/MyHumanoid",
name="my_humanoid"
)
# Add robot to world
world.scene.add(robot)
return world, robot
def main():
"""Main function to run the humanoid simulation"""
print("Setting up Isaac Sim with humanoid robot...")
# Initialize simulation
world, robot = setup_humanoid_simulation()
# Reset the world
world.reset()
print("Humanoid robot created successfully!")
# Run simulation for a few steps
for i in range(200):
world.step(render=True)
if i % 50 == 0:
print(f"Simulation step {i}")
# Print robot state
joint_positions = robot.get_joints_state().positions
print(f"Joint positions: {len(joint_positions)} joints")
print("Simulation completed.")
if __name__ == "__main__":
main()
Step 3: Adding Physics and Control
Create a more advanced script with physics and control called humanoid_control.py:
import omni
from omni.isaac.core import World
from omni.isaac.core.utils.stage import set_stage_units
from omni.isaac.core.utils.prims import get_prim_at_path
from omni.isaac.core.utils.stage import add_reference_to_stage
from pxr import Gf, Sdf, UsdGeom, UsdPhysics, PhysxSchema
import numpy as np
from omni.isaac.core.articulations import Articulation
from omni.isaac.core.utils.viewports import set_camera_view
from omni.isaac.sensor import Camera
from omni.isaac.core.utils.semantics import add_update_semantics
class HumanoidController:
def __init__(self, world, robot):
self.world = world
self.robot = robot
self.joint_names = [
"left_hip_joint", "left_knee_joint", "left_ankle_joint",
"right_hip_joint", "right_knee_joint", "right_ankle_joint",
"left_shoulder_joint", "left_elbow_joint",
"right_shoulder_joint", "right_elbow_joint"
]
# Initialize joint controllers
self.setup_joint_control()
def setup_joint_control(self):
"""Setup joint control parameters"""
# For this example, we'll use simple position control
# In a real implementation, you would configure PID controllers
pass
def move_to_position(self, joint_positions):
"""Move robot joints to specified positions"""
# Set joint positions
self.robot.set_joints_state(positions=np.array(joint_positions))
def get_robot_state(self):
"""Get current robot state"""
joint_state = self.robot.get_joints_state()
return {
'positions': joint_state.positions,
'velocities': joint_state.velocities,
'efforts': joint_state efforts if available else None
}
def simple_walk_cycle(self, phase):
"""Generate simple walking pattern based on phase"""
# Simplified walking gait - in reality this would be much more complex
positions = []
# Left leg (swing phase when right is stance)
positions.append(np.sin(phase) * 0.3) # left_hip
positions.append(np.sin(phase + 0.5) * 0.5) # left_knee
positions.append(np.sin(phase - 0.2) * 0.1) # left_ankle
# Right leg (stance phase when left is swing)
positions.append(np.sin(phase + np.pi) * 0.3) # right_hip
positions.append(np.sin(phase + np.pi + 0.5) * 0.5) # right_knee
positions.append(np.sin(phase + np.pi - 0.2) * 0.1) # right_ankle
# Arms (counterbalance)
positions.append(np.sin(phase + np.pi) * 0.2) # left_shoulder
positions.append(np.sin(phase) * 0.1) # left_elbow
positions.append(np.sin(phase) * 0.2) # right_shoulder
positions.append(np.sin(phase + np.pi) * 0.1) # right_elbow
return positions
def setup_advanced_simulation():
"""Set up Isaac Sim with advanced features"""
# Set stage units
set_stage_units(1.0)
# Get world instance
world = World(stage_units_in_meters=1.0)
# Add ground plane with texture
world.scene.add_default_ground_plane(
static_friction=0.5,
dynamic_friction=0.5,
restitution=0.1
)
# Set up camera view
set_camera_view(eye=[2, 2, 1.5], target=[0, 0, 0.8])
# Create a simple humanoid (using a pre-built asset for this example)
# In a real scenario, you might load a more complex robot
asset_root_path = nucleus.get_assets_root_path()
if asset_root_path is None:
print("Could not find Isaac Sim assets. Using simple cube robot.")
# Create a simple robot using basic shapes
robot_path = "/World/SimpleRobot"
add_reference_to_stage(
usd_path="realsense_camera.usd", # This is just an example
prim_path=robot_path
)
else:
# Try to load a basic robot if available
robot_path = "/World/Robot"
try:
add_reference_to_stage(
usd_path=asset_root_path + "/Isaac/Robots/Franka/franka_instanceable.usd",
prim_path=robot_path
)
except:
print("Could not load Franka robot, creating simple robot instead")
# Create simple robot using basic shapes
create_simple_robot_shapes(robot_path)
# Add sensors
camera = Camera(
prim_path="/World/Camera",
position=np.array([1.5, 1.5, 1.0]),
frequency=30,
resolution=(640, 480)
)
world.scene.add(camera)
return world
def create_simple_robot_shapes(robot_path):
"""Create a simple robot using basic shapes"""
from omni.isaac.core.utils.prims import create_primitive
# Create base body
create_primitive(
prim_path=robot_path + "/base",
primitive_type="Cuboid",
position=np.array([0, 0, 0.5]),
scale=np.array([0.3, 0.3, 0.3]),
color=np.array([0.1, 0.1, 0.8])
)
def main():
"""Main function to run the advanced simulation"""
print("Setting up advanced Isaac Sim environment...")
# Initialize simulation
world = setup_advanced_simulation()
# Reset the world
world.reset()
print("Advanced simulation setup complete!")
# Initialize controller
controller = HumanoidController(world, None) # We'll use a different approach for the robot
# Run simulation with control loop
phase = 0
for i in range(600): # Run for 10 seconds at 60 FPS
world.step(render=True)
# Update walking pattern every few steps
if i % 3 == 0:
phase += 0.1
target_positions = controller.simple_walk_cycle(phase)
# In a real implementation, you would apply these positions to the robot
if i % 60 == 0: # Print every second
print(f"Simulation time: {i/60:.1f}s")
print("Advanced simulation completed.")
if __name__ == "__main__":
main()
Step 4: Creating a ROS 2 Bridge Example
Create a ROS 2 bridge script called isaac_sim_ros_bridge.py:
import rclpy
from rclpy.node import Node
from sensor_msgs.msg import JointState, Image, Imu
from geometry_msgs.msg import Twist, Vector3
from std_msgs.msg import Float64MultiArray
from builtin_interfaces.msg import Time
import numpy as np
import threading
import time
class IsaacSimROSBridge(Node):
def __init__(self):
super().__init__('isaac_sim_ros_bridge')
# Publishers for sensor data from Isaac Sim
self.joint_state_publisher = self.create_publisher(
JointState,
'/joint_states',
10
)
self.imu_publisher = self.create_publisher(
Imu,
'/imu/data',
10
)
# Subscribers for commands to Isaac Sim
self.joint_cmd_subscriber = self.create_subscription(
Float64MultiArray,
'/joint_group_position_controller/command',
self.joint_cmd_callback,
10
)
self.cmd_vel_subscriber = self.create_subscription(
Twist,
'/cmd_vel',
self.cmd_vel_callback,
10
)
# Timer for publishing sensor data
self.timer = self.create_timer(0.1, self.publish_sensor_data)
# Robot state
self.current_joint_positions = [0.0] * 10
self.current_joint_velocities = [0.0] * 10
self.robot_pose = [0.0, 0.0, 0.0] # x, y, theta
# Lock for thread safety
self.state_lock = threading.Lock()
self.get_logger().info('Isaac Sim ROS Bridge initialized')
def joint_cmd_callback(self, msg):
"""Handle joint position commands from ROS"""
with self.state_lock:
if len(msg.data) == len(self.current_joint_positions):
self.current_joint_positions = list(msg.data)
self.get_logger().debug(f'Received joint commands: {self.current_joint_positions}')
def cmd_vel_callback(self, msg):
"""Handle velocity commands from ROS"""
# In a real implementation, this would control the robot in Isaac Sim
self.get_logger().info(f'Received velocity command: linear={msg.linear}, angular={msg.angular}')
# Update robot pose based on velocity (simplified)
dt = 0.1 # Time step
with self.state_lock:
self.robot_pose[0] += msg.linear.x * dt
self.robot_pose[1] += msg.linear.y * dt if hasattr(msg.linear, 'y') else 0.0
self.robot_pose[2] += msg.angular.z * dt
def publish_sensor_data(self):
"""Publish sensor data to ROS"""
# Publish joint states
joint_state_msg = JointState()
joint_state_msg.header.stamp = self.get_clock().now().to_msg()
joint_state_msg.header.frame_id = 'base_link'
joint_state_msg.name = [
'left_hip_joint', 'left_knee_joint', 'left_ankle_joint',
'right_hip_joint', 'right_knee_joint', 'right_ankle_joint',
'left_shoulder_joint', 'left_elbow_joint',
'right_shoulder_joint', 'right_elbow_joint'
]
with self.state_lock:
joint_state_msg.position = self.current_joint_positions.copy()
joint_state_msg.velocity = self.current_joint_velocities.copy()
joint_state_msg.effort = [0.0] * len(self.current_joint_positions)
self.joint_state_publisher.publish(joint_state_msg)
# Publish IMU data (simulated)
imu_msg = Imu()
imu_msg.header.stamp = self.get_clock().now().to_msg()
imu_msg.header.frame_id = 'imu_link'
# Simulated orientation (level for now)
imu_msg.orientation.w = 1.0
imu_msg.orientation.x = 0.0
imu_msg.orientation.y = 0.0
imu_msg.orientation.z = 0.0
# Simulated angular velocity
imu_msg.angular_velocity = Vector3(x=0.0, y=0.0, z=0.0)
# Simulated linear acceleration (gravity + movement)
imu_msg.linear_acceleration = Vector3(x=0.0, y=0.0, z=9.81)
self.imu_publisher.publish(imu_msg)
def main(args=None):
rclpy.init(args=args)
bridge = IsaacSimROSBridge()
try:
rclpy.spin(bridge)
except KeyboardInterrupt:
pass
finally:
bridge.destroy_node()
rclpy.shutdown()
if __name__ == '__main__':
main()
Step 5: Creating a Complete Simulation Example
Create a comprehensive simulation script called complete_humanoid_sim.py:
import omni
from omni.isaac.core import World
from omni.isaac.core.utils.stage import set_stage_units
from omni.isaac.core.utils.viewports import set_camera_view
from omni.isaac.core.utils.nucleus import get_assets_root_path
from omni.isaac.core.utils.stage import add_reference_to_stage
from omni.isaac.sensor import Camera
from omni.isaac.core.materials import PhysicsMaterial
import numpy as np
import asyncio
import carb
class CompleteHumanoidSim:
def __init__(self):
self.world = None
self.robot = None
self.camera = None
self.physics_material = None
def setup_environment(self):
"""Set up the complete simulation environment"""
# Set stage units to meters
set_stage_units(1.0)
# Get world instance
self.world = World(stage_units_in_meters=1.0)
# Configure physics
self.configure_physics()
# Add ground plane
self.world.scene.add_default_ground_plane(
static_friction=0.5,
dynamic_friction=0.5,
restitution=0.1
)
# Set up camera
self.setup_camera()
# Load robot (using a pre-built asset if available)
self.load_robot()
# Create physics materials
self.create_physics_materials()
# Set camera view
set_camera_view(eye=[2.5, 2.5, 1.5], target=[0, 0, 0.8])
def configure_physics(self):
"""Configure physics settings"""
physics_settings = carb.settings.get_settings()
physics_settings.set("/physics/solverPositionIterationCount", 8)
physics_settings.set("/physics/solverVelocityIterationCount", 1)
physics_settings.set("/physics/timeStepsPerSecond", 120) # Higher frequency for better stability
physics_settings.set("/physics/maxSubSteps", 2)
def setup_camera(self):
"""Set up camera for the simulation"""
self.camera = Camera(
prim_path="/World/Camera",
position=np.array([2.5, 2.5, 1.5]),
frequency=30,
resolution=(640, 480)
)
self.world.scene.add(self.camera)
def load_robot(self):
"""Load robot asset"""
asset_root_path = get_assets_root_path()
if asset_root_path is not None:
# Try to load a humanoid robot if available in the assets
robot_path = "/World/Robot"
try:
add_reference_to_stage(
usd_path=asset_root_path + "/Isaac/Robots/Humanoid/humanoid_instanceable.usd",
prim_path=robot_path
)
print("Loaded humanoid robot from assets")
except:
print("Could not load humanoid robot from assets, using simple setup")
# For this example, we'll proceed with a basic setup
else:
print("Could not find Isaac Sim assets, using basic setup")
def create_physics_materials(self):
"""Create physics materials for different surfaces"""
self.physics_material = PhysicsMaterial(
prim_path="/World/Looks/robot_material",
static_friction=0.5,
dynamic_friction=0.5,
restitution=0.1
)
def run_simulation(self, duration=10.0):
"""Run the simulation for a specified duration"""
# Reset the world
self.world.reset()
print(f"Starting simulation for {duration} seconds...")
# Calculate number of steps (assuming 60 FPS rendering)
steps = int(duration * 60)
for i in range(steps):
# Step the physics simulation
self.world.step(render=True)
# Occasionally print progress
if i % 600 == 0: # Every 10 seconds of sim time
elapsed_time = i / 60.0
print(f"Simulation time: {elapsed_time:.1f}s")
# Example: Move robot periodically (this would be controlled by external commands in real use)
if i % 60 == 0: # Every second
self.execute_behavior()
print("Simulation completed.")
def execute_behavior(self):
"""Execute a simple behavior (e.g., move joints)"""
# This is a placeholder for more complex behaviors
# In a real implementation, this would interface with control algorithms
pass
def main():
"""Main function to run the complete simulation"""
print("Setting up complete Isaac Sim humanoid environment...")
sim = CompleteHumanoidSim()
sim.setup_environment()
sim.run_simulation(duration=10.0)
if __name__ == "__main__":
main()
Step 6: Running the Simulation
To run these simulations in Isaac Sim:
-
Start Isaac Sim using the Omniverse App Launcher or directly
-
Open the Isaac Sim application
-
Run the Python scripts from within Isaac Sim's scripting environment:
- Go to Window → Script Editor
- Copy and paste the code into the editor
- Run the script
-
Alternatively, run from command line if Isaac Sim Python API is available:
python complete_humanoid_sim.py
Step 7: Testing and Validation
Basic Functionality Test
- Verify that the robot model loads correctly
- Check that physics simulation is stable
- Confirm that sensors are publishing data
- Test basic movement and control
Performance Testing
- Monitor simulation frame rate
- Check physics stability
- Validate sensor data quality
- Test with different robot configurations
Integration Testing
- Verify ROS 2 bridge functionality
- Test sensor data transmission
- Validate control command execution
- Check system stability over extended runs
Expected Results
After completing this lab, you should have:
- A working Isaac Sim environment with a humanoid robot
- Understanding of USD and Isaac Sim APIs
- Basic control system implementation
- ROS 2 integration for communication
- Experience with sensor simulation and synthetic data generation
Troubleshooting
Common Issues and Solutions
- Physics Instability: Increase solver iterations or reduce time step
- Slow Performance: Simplify models or reduce physics complexity
- Asset Loading Errors: Verify Isaac Sim installation and asset paths
- ROS Connection Issues: Check network configuration and bridge setup
Performance Optimization Tips
- Use simplified collision geometry where possible
- Adjust physics parameters for your specific use case
- Limit the number of active sensors during development
- Use level-of-detail approaches for complex scenes
Extensions
Try these extensions to enhance your understanding:
- Implement more sophisticated control algorithms (PID, MPC)
- Add computer vision capabilities with synthetic data generation
- Create reinforcement learning environments
- Implement more realistic humanoid behaviors
- Add multiple robots to the simulation
- Integrate with perception and planning systems
Summary
In this lab, you've learned to create and control robots in NVIDIA Isaac Sim, leveraging its high-fidelity physics and rendering capabilities. You've explored USD scene description, implemented basic control systems, and integrated with ROS 2 for communication. Isaac Sim's capabilities for synthetic data generation and AI training make it a powerful tool for humanoid robotics development.