Skip to main content

NVIDIA Isaac Sim Basics

Overview

NVIDIA Isaac Sim is a powerful robotics simulation application built on NVIDIA Omniverse. It provides physically accurate simulation for developing, testing, and validating robotics applications, particularly for complex systems like humanoid robots. Isaac Sim combines high-fidelity graphics, accurate physics simulation, and AI training capabilities to create comprehensive digital twins for robotics development.

Introduction to NVIDIA Isaac Sim

What is Isaac Sim?

NVIDIA Isaac Sim is:

  • A robotics simulation application built on Omniverse
  • A platform for synthetic data generation
  • An environment for AI training and testing
  • A tool for robotics algorithm validation

Key Features

  1. Physically Accurate Simulation: Uses PhysX 5.0 for realistic physics
  2. High-Fidelity Graphics: RTX-accelerated rendering for computer vision
  3. Synthetic Data Generation: Create labeled training data for AI
  4. ROS/ROS2 Integration: Seamless integration with ROS ecosystems
  5. AI Training Environment: Built-in reinforcement learning capabilities
  6. Extensible Architecture: Python API for custom extensions

Installation and Setup

System Requirements

Before installing Isaac Sim, ensure your system meets requirements:

  • GPU: NVIDIA RTX GPU with 8GB+ VRAM (RTX 3080 or better recommended)
  • OS: Ubuntu 20.04/22.04 or Windows 10/11
  • RAM: 32GB+ recommended
  • Storage: 10GB+ free space
  • CUDA: CUDA 11.8 or later

Installation Methods

Method 1: Isaac Sim Launcher

# Download Isaac Sim from NVIDIA Developer website
# Use the Isaac Sim Launcher for easy installation

Method 2: Docker Container

# Pull the Isaac Sim Docker image
docker pull nvcr.io/nvidia/isaac-sim:latest

# Run Isaac Sim in Docker
docker run --gpus all -it --rm \
--network=host \
--env "DISPLAY" \
--volume="/tmp/.X11-unix:/tmp/.X11-unix:rw" \
--volume="/home/$USER/.Xauthority:/root/.Xauthority:rw" \
--volume="/home/$USER/isaac_sim_data:/isaac_sim_data" \
nvcr.io/nvidia/isaac-sim:latest

Method 3: Omniverse App Launcher

  • Install Omniverse App Launcher
  • Add Isaac Sim extension
  • Launch directly from Omniverse ecosystem

Isaac Sim Architecture

Core Components

  1. Omniverse Nucleus: Central server for scene management
  2. PhysX Physics Engine: Realistic physics simulation
  3. RTX Renderer: High-fidelity graphics rendering
  4. ROS Bridge: Integration with ROS/ROS2
  5. AI Training Framework: Reinforcement learning capabilities
  6. Extension System: Python-based extensibility

Scene Graph Structure

Isaac Sim uses USD (Universal Scene Description) for scene representation:

  • Prims: Basic scene objects
  • Attributes: Object properties
  • Relationships: Connections between objects
  • Variants: Different configurations of objects

Basic Usage and Interface

Main Interface Components

  1. Viewport: 3D scene visualization
  2. Stage Panel: Scene hierarchy
  3. Property Panel: Object properties
  4. Timeline: Animation and simulation controls
  5. Log Panel: System messages and errors
  • Orbit: Alt + Left mouse button
  • Pan: Alt + Middle mouse button
  • Zoom: Alt + Right mouse button or mouse wheel
  • Fly Mode: Hold F and use WASD keys

Creating and Managing Scenes

Basic Scene Setup

import omni
from pxr import UsdGeom, Gf, Sdf

# Create a new stage
stage = omni.usd.get_context().get_stage()

# Set up the default prim
default_prim = UsdGeom.Xform.Define(stage, Sdf.Path("/World"))
stage.SetDefaultPrim(default_prim.GetPrim())

# Add ground plane
plane = UsdGeom.Mesh.Define(stage, Sdf.Path("/World/groundPlane"))
# Configure plane properties

Importing Robot Models

Isaac Sim supports various robot model formats:

URDF Import

from omni.isaac.core.utils.nucleus import get_assets_root_path
from omni.isaac.core.utils.stage import add_reference_to_stage

# Import URDF robot
add_reference_to_stage(
usd_path="omniverse://localhost/NVIDIA/Assets/Isaac/Robots/Franka/franka.usd",
prim_path="/World/Robot"
)

USD Robot Models

# Load a USD robot model directly
robot_path = "/World/MyRobot"
add_reference_to_stage(
usd_path="path/to/my_robot.usd",
prim_path=robot_path
)

Physics Simulation

Physics Scene Configuration

from omni.isaac.core.utils.prims import get_prim_at_path
from omni.physx.scripts import physicsUtils

# Configure physics scene
physics_scene = get_prim_at_path("/World/physicsScene")
physics_scene.GetAttribute("physics:defaultPositionIterationCount").Set(8)
physics_scene.GetAttribute("physics:defaultVelocityIterationCount").Set(1)
physics_scene.GetAttribute("physics:gravity").Set(Gf.Vec3f(0.0, 0.0, -981.0)) # cm/s^2

Material Properties

from omni.isaac.core.materials import PhysicsMaterial

# Create physics materials
material = PhysicsMaterial(
prim_path="/World/Looks/robot_material",
static_friction=0.5,
dynamic_friction=0.5,
restitution=0.1 # Bounciness
)

ROS/ROS2 Integration

Setting Up ROS Bridge

from omni.isaac.core.utils.extensions import enable_extension

# Enable ROS bridge extension
enable_extension("omni.isaac.ros_bridge")

# Configure ROS bridge settings
import carb
carb.settings.get_settings().set("/app/ros_bridge/enable", True)
carb.settings.get_settings().set("/app/ros_bridge/port", 8888)

Publishing Sensor Data

import rospy
from sensor_msgs.msg import JointState, Image, LaserScan
from geometry_msgs.msg import Twist

class IsaacSimROSNode:
def __init__(self):
rospy.init_node('isaac_sim_bridge')

# Publishers
self.joint_pub = rospy.Publisher('/joint_states', JointState, queue_size=10)
self.image_pub = rospy.Publisher('/camera/image_raw', Image, queue_size=10)

# Subscribers
self.cmd_sub = rospy.Subscriber('/cmd_vel', Twist, self.cmd_vel_callback)

def publish_joint_states(self, joint_positions, joint_velocities, joint_names):
msg = JointState()
msg.header.stamp = rospy.Time.now()
msg.name = joint_names
msg.position = joint_positions
msg.velocity = joint_velocities

self.joint_pub.publish(msg)

def cmd_vel_callback(self, msg):
# Process velocity commands
self.process_velocity_command(msg.linear.x, msg.angular.z)

Isaac Sim ROS Extension

The Isaac Sim ROS extension provides:

  • Standard ROS message support
  • TF tree management
  • Robot state publishing
  • Sensor data streaming
  • Action and service interfaces

Sensor Simulation

Camera Sensors

from omni.isaac.sensor import Camera
import numpy as np

# Create a camera sensor
camera = Camera(
prim_path="/World/Robot/Camera",
frequency=30, # Hz
resolution=(640, 480)
)

# Access camera data
rgb_data = camera.get_rgb()
depth_data = camera.get_depth()
seg_data = camera.get_semantic_segmentation()

LiDAR Simulation

from omni.isaac.range_sensor import _range_sensor

# Create LiDAR sensor
lidar_interface = _range_sensor.acquire_lidar_sensor_interface()
lidar_sensor = lidar_interface.create_lidar_sensor(
prim_path="/World/Robot/Lidar",
translation=(0.0, 0.0, 0.5),
orientation=(0.0, 0.0, 0.0, 1.0),
config="Example_Rotary",
visible=True
)

# Get LiDAR data
lidar_data = lidar_interface.get_sensor_reading(lidar_sensor)
ranges = lidar_data.ranges

IMU and Force Sensors

from omni.isaac.core.sensors import ImuSensor

# Create IMU sensor
imu_sensor = ImuSensor(
prim_path="/World/Robot/IMU",
frequency=100
)

# Get IMU data
linear_acceleration = imu_sensor.get_linear_acceleration()
angular_velocity = imu_sensor.get_angular_velocity()
orientation = imu_sensor.get_orientation()

Humanoid Robot Simulation

Creating Humanoid Models

from omni.isaac.core.robots import Robot
from omni.isaac.core.articulations import Articulation

class HumanoidRobot(Robot):
def __init__(
self,
prim_path: str,
name: str = "humanoid_robot",
usd_path: str = None,
position: np.ndarray = np.array([0, 0, 0]),
orientation: np.ndarray = np.array([0, 0, 0, 1]),
) -> None:
self._usd_path = usd_path
self._name = name

super().__init__(
prim_path=prim_path,
name=name,
usd_path=usd_path,
position=position,
orientation=orientation,
)

def initialize(self, physics_sim_view=None):
super().initialize(physics_sim_view)

# Initialize humanoid-specific components
self._gripper = None
self._camera = None

def get_joint_positions(self):
return self.get_joints_state().positions

def get_joint_velocities(self):
return self.get_joints_state().velocities

def set_joint_positions(self, positions):
self.set_joints_state(positions=positions)

Balance and Locomotion

import numpy as np
from omni.isaac.core.utils.stage import get_current_stage
from omni.isaac.core.utils.prims import get_prim_at_path

class HumanoidController:
def __init__(self, robot):
self.robot = robot
self.joint_names = [
"left_hip_joint", "left_knee_joint", "left_ankle_joint",
"right_hip_joint", "right_knee_joint", "right_ankle_joint",
"left_shoulder_joint", "left_elbow_joint",
"right_shoulder_joint", "right_elbow_joint"
]

def calculate_balance_correction(self):
# Get robot's center of mass
root_link = self.robot._root_link
com_position = root_link.get_world_pos()

# Calculate support polygon (simplified for biped)
left_foot_pos = self.get_link_position("left_foot")
right_foot_pos = self.get_link_position("right_foot")

# Calculate balance correction torques
# This is a simplified example - real implementation would be more complex
correction_torques = np.zeros(len(self.joint_names))

return correction_torques

def walk_step(self, step_size=0.2):
# Implement walking gait
# This would involve complex inverse kinematics and balance control
pass

AI Training and Synthetic Data

Reinforcement Learning Environment

import torch
import omni.isaac.core.utils.prims as prims
from omni.isaac.core import World
from omni.isaac.core.utils.stage import add_reference_to_stage

class HumanoidRLEnv:
def __init__(self):
self.world = World(stage_units_in_meters=1.0)
self.setup_scene()

def setup_scene(self):
# Add ground plane
self.world.scene.add_ground_plane()

# Add humanoid robot
add_reference_to_stage(
usd_path="path/to/humanoid_robot.usd",
prim_path="/World/Robot"
)

# Initialize the world
self.world.reset()

def get_observation(self):
# Get joint positions, velocities, IMU data, etc.
robot = self.world.scene.get_object("Robot")
joint_pos = robot.get_joints_state().positions
joint_vel = robot.get_joints_state().velocities

# Combine into observation vector
observation = np.concatenate([joint_pos, joint_vel])
return observation

def step(self, action):
# Apply action to robot
robot = self.world.scene.get_object("Robot")
current_pos = robot.get_joints_state().positions
new_pos = current_pos + action * 0.01 # Scale action appropriately

robot.set_joints_state(positions=new_pos)

# Step the physics simulation
self.world.step(render=True)

# Get new observation
obs = self.get_observation()

# Calculate reward (simplified)
reward = self.calculate_reward()

# Check if episode is done
done = self.is_episode_done()

return obs, reward, done, {}

def calculate_reward(self):
# Implement reward function for humanoid locomotion
# This would include factors like forward progress, balance, etc.
return 0.0

def is_episode_done(self):
# Check if humanoid has fallen or achieved goal
return False

Synthetic Data Generation

from omni.isaac.synthetic_utils import SyntheticDataHelper
import cv2

class DataGenerator:
def __init__(self, camera_path="/World/Robot/Camera"):
self.camera_path = camera_path
self.sd_helper = SyntheticDataHelper()

def generate_training_data(self, num_samples=1000):
for i in range(num_samples):
# Randomize scene
self.randomize_scene()

# Capture RGB image
rgb = self.sd_helper.get_rgb(self.camera_path)

# Capture depth
depth = self.sd_helper.get_depth(self.camera_path)

# Capture segmentation
seg = self.sd_helper.get_semantic_segmentation(self.camera_path)

# Save data with annotations
self.save_data(rgb, depth, seg, f"sample_{i:06d}")

def randomize_scene(self):
# Randomize lighting, object positions, textures, etc.
pass

def save_data(self, rgb, depth, seg, name):
# Save RGB image
cv2.imwrite(f"rgb/{name}.png", cv2.cvtColor(rgb, cv2.COLOR_RGB2BGR))

# Save depth data
cv2.imwrite(f"depth/{name}.png", depth)

# Save segmentation
cv2.imwrite(f"seg/{name}.png", seg)

Extensions and Customization

Creating Custom Extensions

import omni.ext
import omni.ui as ui

class IsaacSimExtension(omni.ext.IExt):
def on_startup(self, ext_id):
print("[isaac_sim_extension] Isaac Sim Extension Startup")

# Create UI window
self._window = ui.Window("Isaac Sim Extension", width=300, height=300)

with self._window.frame:
with ui.VStack():
ui.Label("Isaac Sim Extension")
ui.Button("Run Simulation", clicked_fn=self._run_simulation)

def _run_simulation(self):
# Custom simulation logic
print("Running custom simulation...")

def on_shutdown(self):
print("[isaac_sim_extension] Isaac Sim Extension Shutdown")

Python API Usage

import omni
import carb
from omni.isaac.core import World
from omni.isaac.core.utils.stage import add_reference_to_stage
from omni.isaac.core.utils.nucleus import get_assets_root_path

# Initialize Isaac Sim
world = World(stage_units_in_meters=1.0)

# Add assets
assets_root_path = get_assets_root_path()
if assets_root_path is None:
carb.log_error("Could not find Isaac Sim assets. Please check your Isaac Sim installation.")

# Add robot to scene
add_reference_to_stage(
usd_path=assets_root_path + "/Isaac/Robots/Franka/franka_instanceable.usd",
prim_path="/World/Franka"
)

# Reset and step the world
world.reset()
for i in range(100):
world.step(render=True)

Performance Optimization

Rendering Optimization

# Adjust rendering settings for performance
import carb

settings = carb.settings.get_settings()

# Lower rendering quality for better performance
settings.set("/rtx/sceneDb/enableL2Cache", False)
settings.set("/rtx/indirectDiffuse/enable", False)
settings.set("/rtx/reflections/enable", False)
settings.set("/rtx/globalIllumination/sputnik/enable", False)

Physics Optimization

# Optimize physics settings
def optimize_physics():
# Reduce solver iterations for better performance
carb.settings.get_settings().set("/physics/solverPositionIterationCount", 4)
carb.settings.get_settings().set("/physics/solverVelocityIterationCount", 1)

# Adjust substeps if needed
carb.settings.get_settings().set("/physics/timeStepsPerSecond", 60)

Best Practices for Humanoid Robotics

Model Preparation

  • Ensure proper mass properties for realistic physics
  • Use appropriate collision geometry
  • Validate joint limits and ranges
  • Include realistic sensor placements

Simulation Fidelity

  • Calibrate physics parameters to match real robot
  • Include sensor noise models
  • Validate simulation against real-world data
  • Test extreme conditions and failure modes

AI Training Considerations

  • Implement domain randomization for robust models
  • Generate diverse training scenarios
  • Include realistic sensor noise and latency
  • Validate trained models in simulation before real-world deployment

Troubleshooting Common Issues

Performance Problems

  • Slow simulation: Reduce rendering quality, simplify collision geometry
  • High GPU usage: Lower resolution, disable unnecessary rendering features
  • Physics instability: Adjust solver parameters, verify mass properties

Connection Issues

  • ROS bridge not connecting: Check network settings, firewall rules
  • Message type mismatches: Verify ROS message definitions
  • TF tree problems: Ensure proper frame naming and parenting

Model Issues

  • Robot falls through ground: Check collision geometry and mass
  • Joints behave strangely: Validate joint limits and drive parameters
  • Sensors not publishing: Verify sensor configuration and ROS bridge

Integration with Other Tools

ROS 2 Bridge Configuration

# Launch ROS 2 bridge
ros2 launch omni_isaac_ros_bridge isaac_sim.launch.py

External Control Systems

  • Integrate with MoveIt for motion planning
  • Connect to navigation stacks
  • Interface with perception systems
  • Link to behavior trees or state machines

Summary

NVIDIA Isaac Sim provides a comprehensive platform for humanoid robotics simulation with physically accurate physics, high-fidelity graphics, and AI training capabilities. Its integration with ROS/ROS2, extensible architecture, and synthetic data generation capabilities make it an ideal choice for developing and testing complex humanoid robot behaviors. Proper configuration of physics parameters, sensor simulation, and performance optimization are essential for creating effective digital twins that accurately represent real-world robotic systems.