NVIDIA Isaac Gym / RL Examples
Overview
NVIDIA Isaac Gym is a GPU-accelerated robotics simulation framework that enables parallel training of reinforcement learning agents for robotic tasks. Built on NVIDIA's PhysX physics engine and leveraging GPU acceleration, Isaac Gym can simulate thousands of robot environments in parallel, dramatically reducing training time for complex robotic behaviors. This chapter explores Isaac Gym's capabilities and provides practical examples for humanoid robotics applications.
Introduction to NVIDIA Isaac Gym
What is Isaac Gym?
NVIDIA Isaac Gym is:
- A GPU-accelerated physics simulation framework
- A reinforcement learning environment specifically designed for robotics
- Part of the Isaac ecosystem for robotics development
- Capable of parallelizing thousands of robot simulations simultaneously
- Integrated with NVIDIA's RTX rendering for computer vision training
Key Features
GPU Acceleration
- Parallel physics simulation across thousands of environments
- Real-time rendering for computer vision applications
- CUDA-accelerated compute operations
- Efficient memory management for large-scale training
Robotics-Focused Design
- Realistic physics simulation with PhysX 5.0
- Support for complex robot articulations
- Integrated sensor simulation
- ROS/ROS2 bridge for real robot deployment
RL Integration
- Native support for popular RL algorithms
- Parallel training and inference
- Curriculum learning capabilities
- Pre-built environments for common robotic tasks
Architecture
Application Layer (RL Algorithms)
↓
Environment Manager (Parallel Environments)
↓
Physics Engine (PhysX 5.0)
↓
GPU Compute (CUDA/RTX)
Installing and Setting Up Isaac Gym
Prerequisites
Before installing Isaac Gym, ensure your system meets the requirements:
# System requirements
- NVIDIA GPU with compute capability 6.0 or higher (Pascal or newer)
- CUDA 11.8 or later
- Linux (Ubuntu 20.04/22.04) or Windows 10/11
- Python 3.8-3.10
# Install Isaac Gym
pip install isaacgym
# For reinforcement learning tools
pip install rlgpu # NVIDIA's RL GPU tools
Basic Environment Setup
import isaacgym
from isaacgym import gymapi
from isaacgym import gymtorch
import torch
import numpy as np
# Initialize Isaac Gym
gym = gymapi.acquire_gym()
# Configure simulation parameters
sim_params = gymapi.SimParams()
sim_params.up_axis = gymapi.UP_AXIS_Z
sim_params.gravity = gymapi.Vec3(0.0, 0.0, -9.81)
# Choose physics engine
sim_params.physx.solver_type = 1
sim_params.physx.num_position_iterations = 8
sim_params.physx.num_velocity_iterations = 1
sim_params.physx.max_gpu_contact_pairs = 2**23
sim_params.physx.max_gpu_deleted_pairs = 2**23
sim_params.physx.use_gpu = True # Enable GPU physics
# Create simulation
sim = gym.create_sim(0, 0, gymapi.SIM_PHYSX, sim_params)
Creating a Basic Robot Environment
Robot Asset Loading
# Load robot asset
asset_root = "path/to/robot/assets"
asset_file = "humanoid.urdf" # or .usd, .obj
asset_options = gymapi.AssetOptions()
asset_options.fix_base_link = False # Robot should be free to move
asset_options.enable_self_collision = True # Enable self-collision
asset_options.flip_visual_attachments = False
asset_options.use_mesh_materials = False
print("Loading asset '%s' from '%s'" % (asset_file, asset_root))
asset = gym.load_asset(sim, asset_root, asset_file, asset_options)
# Get robot properties
robot_dof_props = gym.get_asset_dof_properties(sim, asset)
robot_rigid_shape_props = gym.get_asset_rigid_shape_properties(sim, asset)
Environment Creation
# Configure environments
num_envs = 4096 # Number of parallel environments
spacing = 2.5
# Create environment
env_lower = gymapi.Vec3(-spacing, -spacing, -spacing)
env_upper = gymapi.Vec3(spacing, spacing, spacing)
print("Creating %d environments" % num_envs)
num_per_row = int(np.sqrt(num_envs))
envs = []
for i in range(num_envs):
# Create environment
env = gym.create_env(sim, env_lower, env_upper, num_per_row)
# Add robot to environment
pose = gymapi.Transform()
pose.p = gymapi.Vec3(0.0, 0.0, 1.0) # Start position
pose.r = gymapi.Quat(0.0, 0.0, 0.0, 1.0) # Start orientation
actor_handle = gym.create_actor(env, asset, pose, "robot", i, 1, 0)
# Set DOF drive properties
gym.set_actor_dof_properties(env, actor_handle, robot_dof_props)
# Set rigid body properties
gym.set_actor_rigid_body_properties(env, actor_handle, robot_rigid_body_props)
envs.append(env)
Implementing RL Agents with Isaac Gym
RL Environment Class
import torch
import torch.nn as nn
import numpy as np
from rl_games.common.env_configurations import get_env_info
from rl_games.algos_torch import torch_ext
from rl_games.algos_torch.running_mean_std import RunningMeanStd
import isaacgym
class IsaacGymEnv:
def __init__(self, gym, sim, envs, num_actor_obs, num_actor_actions):
self.gym = gym
self.sim = sim
self.envs = envs
# Action and observation dimensions
self.num_actions = num_actor_actions
self.num_obs = num_actor_obs
# Get gym tensors
self.obs_tensor = gym.acquire_env_tensors(sim, 'obs')
self.rew_tensor = gym.acquire_env_tensors(sim, 'rew')
self.reset_tensor = gym.acquire_env_tensors(sim, 'reset')
# Actor handles
self.actor_handles = []
for env in envs:
actor_handle = gym.get_actor_handle(env, 0)
self.actor_handles.append(actor_handle)
def reset(self):
"""Reset the environment and return initial observations"""
# Reset simulation
self.gym.simulate(self.sim)
self.gym.fetch_results(self.sim, True)
# Fetch observations
obs = gymtorch.wrap_tensor(self.obs_tensor)
return obs
def step(self, actions):
"""Execute actions and return (obs, reward, done, info)"""
# Apply actions to simulation
actions_tensor = torch.from_numpy(actions).float()
gymtorch.set_dof_position_targets_tensor(self.sim, gymtorch.unwrap_tensor(actions_tensor))
# Step simulation
self.gym.simulate(self.sim)
self.gym.fetch_results(self.sim, True)
# Get results
obs = gymtorch.wrap_tensor(self.obs_tensor)
rew = gymtorch.wrap_tensor(self.rew_tensor)
done = gymtorch.wrap_tensor(self.reset_tensor)
return obs, rew, done, {}
Deep Deterministic Policy Gradient (DDPG) for Robot Control
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import random
from collections import deque
class Actor(nn.Module):
def __init__(self, state_dim, action_dim, max_action):
super(Actor, self).__init__()
self.l1 = nn.Linear(state_dim, 256)
self.l2 = nn.Linear(256, 256)
self.l3 = nn.Linear(256, action_dim)
self.max_action = max_action
def forward(self, state):
a = torch.relu(self.l1(state))
a = torch.relu(self.l2(a))
return self.max_action * torch.tanh(self.l3(a))
class Critic(nn.Module):
def __init__(self, state_dim, action_dim):
super(Critic, self).__init__()
# Q1 architecture
self.l1 = nn.Linear(state_dim + action_dim, 256)
self.l2 = nn.Linear(256, 256)
self.l3 = nn.Linear(256, 1)
# Q2 architecture
self.l4 = nn.Linear(state_dim + action_dim, 256)
self.l5 = nn.Linear(256, 256)
self.l6 = nn.Linear(256, 1)
def forward(self, state, action):
sa = torch.cat([state, action], 1)
q1 = torch.relu(self.l1(sa))
q1 = torch.relu(self.l2(q1))
q1 = self.l3(q1)
q2 = torch.relu(self.l4(sa))
q2 = torch.relu(self.l5(q2))
q2 = self.l6(q2)
return q1, q2
def Q1(self, state, action):
sa = torch.cat([state, action], 1)
q1 = torch.relu(self.l1(sa))
q1 = torch.relu(self.l2(q1))
q1 = self.l3(q1)
return q1
class DDPGAgent:
def __init__(self, state_dim, action_dim, max_action):
self.actor = Actor(state_dim, action_dim, max_action).cuda()
self.actor_target = Actor(state_dim, action_dim, max_action).cuda()
self.actor_target.load_state_dict(self.actor.state_dict())
self.actor_optimizer = optim.Adam(self.actor.parameters(), lr=1e-4)
self.critic = Critic(state_dim, action_dim).cuda()
self.critic_target = Critic(state_dim, action_dim).cuda()
self.critic_target.load_state_dict(self.critic.state_dict())
self.critic_optimizer = optim.Adam(self.critic.parameters(), lr=1e-3)
self.max_action = max_action
self.replay_buffer = deque(maxlen=1000000)
self.discount = 0.99
self.tau = 0.005
self.policy_noise = 0.2
self.noise_clip = 0.5
self.policy_freq = 2
def select_action(self, state):
state = torch.FloatTensor(state.reshape(1, -1)).cuda()
return self.actor(state).cpu().data.numpy().flatten()
def train(self, batch_size=100):
# Sample replay buffer
batch = random.sample(self.replay_buffer, batch_size)
state, action, next_state, reward, not_done = map(torch.FloatTensor, zip(*batch))
state = state.cuda()
action = action.cuda()
next_state = next_state.cuda()
reward = reward.cuda()
not_done = not_done.cuda()
with torch.no_grad():
# Select action according to policy and add clipped noise
noise = (torch.randn_like(action) * self.policy_noise).clamp(-self.noise_clip, self.noise_clip)
next_action = (self.actor_target(next_state) + noise).clamp(-self.max_action, self.max_action)
# Compute the target Q value
target_Q1, target_Q2 = self.critic_target(next_state, next_action)
target_Q = torch.min(target_Q1, target_Q2)
target_Q = reward + not_done * self.discount * target_Q
# Get current Q estimates
current_Q1, current_Q2 = self.critic(state, action)
# Compute critic loss
critic_loss = F.mse_loss(current_Q1, target_Q) + F.mse_loss(current_Q2, target_Q)
# Optimize the critic
self.critic_optimizer.zero_grad()
critic_loss.backward()
self.critic_optimizer.step()
# Delayed policy updates
if self.total_it % self.policy_freq == 0:
# Compute actor loss
actor_loss = -self.critic.Q1(state, self.actor(state)).mean()
# Optimize the actor
self.actor_optimizer.zero_grad()
actor_loss.backward()
self.actor_optimizer.step()
# Update the frozen target models
for param, target_param in zip(self.critic.parameters(), self.critic_target.parameters()):
target_param.data.copy_(self.tau * param.data + (1 - self.tau) * target_param.data)
for param, target_param in zip(self.actor.parameters(), self.actor_target.parameters()):
target_param.data.copy_(self.tau * param.data + (1 - self.tau) * target_param.data)
Humanoid Locomotion Example
Bipedal Walker Environment
import torch
import torch.nn as nn
import numpy as np
from isaacgym import gymapi
from isaacgym import gymtorch
class BipedalWalkerEnv:
def __init__(self, num_envs=4096):
self.num_envs = num_envs
self.num_obs = 48 # Observation dimension
self.num_actions = 10 # 5 joints per leg = 10 total
# Initialize Isaac Gym
self.gym = gymapi.acquire_gym()
# Create simulation
sim_params = gymapi.SimParams()
sim_params.up_axis = gymapi.UP_AXIS_Z
sim_params.gravity = gymapi.Vec3(0.0, 0.0, -9.81)
sim_params.physx.num_position_iterations = 8
sim_params.physx.num_velocity_iterations = 1
sim_params.physx.max_gpu_contact_pairs = 2**23
sim_params.physx.use_gpu = True
self.sim = gymapi.create_sim(self.gym, 0, 0, gymapi.SIM_PHYSX, sim_params)
# Create ground plane
plane_params = gymapi.PlaneParams()
plane_params.normal = gymapi.Vec3(0.0, 0.0, 1.0)
plane_params.distance = 0.0
self.gym.add_ground(self.sim, plane_params)
# Load robot asset
asset_root = "path/to/humanoid/assets"
asset_file = "bipedal_walker.urdf"
asset_options = gymapi.AssetOptions()
asset_options.fix_base_link = False
asset_options.enable_self_collision = True
self.robot_asset = self.gym.load_asset(self.sim, asset_root, asset_file, asset_options)
# Create environments
self._create_envs()
# Get gym tensors
self._setup_tensors()
def _create_envs(self):
spacing = 2.5
env_lower = gymapi.Vec3(-spacing, -spacing, -spacing)
env_upper = gymapi.Vec3(spacing, spacing, spacing)
self.envs = []
num_per_row = int(np.sqrt(self.num_envs))
for i in range(self.num_envs):
env = self.gym.create_env(self.sim, env_lower, env_upper, num_per_row)
# Add robot to environment
pose = gymapi.Transform()
pose.p = gymapi.Vec3(0.0, 0.0, 1.0)
pose.r = gymapi.Quat(0.0, 0.0, 0.0, 1.0)
actor_handle = self.gym.create_actor(env, self.robot_asset, pose, "robot", i, 1, 0)
# Set DOF properties
robot_dof_props = self.gym.get_asset_dof_properties(self.sim, self.robot_asset)
for j in range(robot_dof_props.num_dofs):
robot_dof_props.stiffness[j] = 800.0
robot_dof_props.damping[j] = 50.0
robot_dof_props.armature[j] = 0.01
self.gym.set_actor_dof_properties(env, actor_handle, robot_dof_props)
self.envs.append(env)
def _setup_tensors(self):
self.obs_tensor = self.gym.acquire_env_tensors(self.sim, 'obs')
self.rew_tensor = self.gym.acquire_env_tensors(self.sim, 'rew')
self.reset_tensor = self.gym.acquire_env_tensors(self.sim, 'reset')
self.state_tensor = self.gym.acquire_env_tensors(self.sim, 'state')
self.obs_buf = gymtorch.wrap_tensor(self.obs_tensor).clone()
self.rew_buf = gymtorch.wrap_tensor(self.rew_tensor).clone()
self.reset_buf = gymtorch.wrap_tensor(self.reset_tensor).clone()
self.state_buf = gymtorch.wrap_tensor(self.state_tensor).clone()
def reset(self):
"""Reset all environments and return initial observations"""
self.gym.simulate(self.sim)
self.gym.fetch_results(self.sim, True)
# Reset joint positions and velocities
joint_pos = gymtorch.get_actor_dof_position_tensor(self.sim)
joint_vel = gymtorch.get_actor_dof_velocity_tensor(self.sim)
# Add small randomization
joint_pos[:] = torch.randn_like(joint_pos) * 0.1
joint_vel[:] = torch.randn_like(joint_vel) * 0.01
obs = gymtorch.wrap_tensor(self.obs_tensor)
return obs
def step(self, actions):
"""Execute actions and return step results"""
# Apply actions to simulation
actions_tensor = torch.from_numpy(actions).float().cuda()
gymtorch.set_dof_position_targets_tensor(self.sim, gymtorch.unwrap_tensor(actions_tensor))
# Step simulation
self.gym.simulate(self.sim)
self.gym.fetch_results(self.sim, True)
# Get results
obs = gymtorch.wrap_tensor(self.obs_tensor)
rew = gymtorch.wrap_tensor(self.rew_tensor)
done = gymtorch.wrap_tensor(self.reset_tensor)
# Reset environments that need resetting
reset_env_ids = done.nonzero(as_tuple=False).squeeze(-1)
if len(reset_env_ids) > 0:
self.reset_idx(reset_env_ids)
return obs, rew, done, {}
def reset_idx(self, env_ids):
"""Reset specific environments"""
# Reset joint positions and velocities for specific environments
joint_pos = gymtorch.get_actor_dof_position_tensor(self.sim)
joint_vel = gymtorch.get_actor_dof_velocity_tensor(self.sim)
# Randomize starting positions
joint_pos[env_ids] = torch.randn_like(joint_pos[env_ids]) * 0.1
joint_vel[env_ids] = torch.randn_like(joint_vel[env_ids]) * 0.01
Reward Function for Walking
def walking_reward(robot_state, actions, dt=1/60):
"""Calculate reward for bipedal walking task"""
# Robot state includes position, velocity, orientation, joint angles, etc.
pos = robot_state['position']
lin_vel = robot_state['linear_velocity']
ang_vel = robot_state['angular_velocity']
joint_pos = robot_state['joint_positions']
joint_vel = robot_state['joint_velocities']
# Forward velocity reward (encourage moving forward)
forward_vel_reward = max(0, lin_vel[0]) # x-axis is forward
# Balance reward (maintain upright orientation)
up_vec = robot_state['up_vector']
target_up = torch.tensor([0, 0, 1]).float()
balance_reward = torch.dot(up_vec, target_up)
# Energy efficiency (penalize large joint torques/velocities)
energy_penalty = -torch.mean(torch.abs(joint_vel))
# Stay alive bonus
alive_bonus = 0.1
# Penalty for falling
fall_penalty = 0
if robot_state['height'] < 0.5: # Robot is on the ground
fall_penalty = -1.0
total_reward = (0.5 * forward_vel_reward +
0.3 * balance_reward +
0.1 * energy_penalty +
0.05 * alive_bonus +
0.05 * fall_penalty)
return total_reward
Advanced Isaac Gym Features
Domain Randomization
class DomainRandomizedBipedalEnv(BipedalWalkerEnv):
def __init__(self, num_envs=4096, randomization_params=None):
super().__init__(num_envs)
# Randomization parameters
self.randomization_params = randomization_params or {
'mass_scale_range': [0.8, 1.2],
'friction_range': [0.5, 1.5],
'restitution_range': [0.0, 0.5],
'motor_strength_range': [0.8, 1.2],
'gravity_range': [-10.8, -8.8]
}
# Store original properties for randomization
self.original_mass_props = None
self.original_dof_props = None
def randomize_env(self, env_ids):
"""Randomize properties for specific environments"""
for env_id in env_ids:
# Randomize robot mass
mass_scale = np.random.uniform(
self.randomization_params['mass_scale_range'][0],
self.randomization_params['mass_scale_range'][1]
)
# Randomize DOF properties
dof_props = self.gym.get_actor_dof_properties(self.envs[env_id], 0)
for i in range(len(dof_props.stiffness)):
dof_props.stiffness[i] *= np.random.uniform(
self.randomization_params['motor_strength_range'][0],
self.randomization_params['motor_strength_range'][1]
)
dof_props.damping[i] *= np.random.uniform(
self.randomization_params['motor_strength_range'][0],
self.randomization_params['motor_strength_range'][1]
)
self.gym.set_actor_dof_properties(self.envs[env_id], 0, dof_props)
def reset(self):
"""Reset environments with randomization"""
reset_env_ids = torch.arange(self.num_envs, device='cuda', dtype=torch.long)
self.randomize_env(reset_env_ids)
return super().reset()
Curriculum Learning
class CurriculumBipedalEnv(BipedalWalkerEnv):
def __init__(self, num_envs=4096):
super().__init__(num_envs)
# Curriculum parameters
self.curriculum_levels = [
{'obstacle_height': 0.0, 'slope_angle': 0.0, 'reward_scaling': 1.0},
{'obstacle_height': 0.05, 'slope_angle': 0.05, 'reward_scaling': 1.2},
{'obstacle_height': 0.1, 'slope_angle': 0.1, 'reward_scaling': 1.5},
{'obstacle_height': 0.15, 'slope_angle': 0.15, 'reward_scaling': 2.0}
]
self.current_level = 0
self.performance_threshold = 0.8 # Success rate threshold
self.level_progress = torch.zeros(self.num_envs, device='cuda')
def update_curriculum(self, episode_rewards):
"""Update curriculum level based on performance"""
success_rate = torch.mean((episode_rewards > self.performance_threshold).float())
if success_rate > 0.9 and self.current_level < len(self.curriculum_levels) - 1:
self.current_level += 1
print(f"Curriculum advanced to level {self.current_level}")
return success_rate
Sensor Simulation
class SensorizedBipedalEnv(BipedalWalkerEnv):
def __init__(self, num_envs=4096):
super().__init__(num_envs)
# Add camera sensors
self.camera_handles = []
for i, env in enumerate(self.envs):
# Create camera sensor
camera_props = gymapi.CameraProperties()
camera_props.width = 640
camera_props.height = 480
camera_props.enable_tensors = True
camera_handle = self.gym.create_camera_sensor(env, 0, camera_props)
# Set camera position (mounted on robot head)
local_transform = gymapi.Transform()
local_transform.p = gymapi.Vec3(0, 0, 0.5) # 0.5m above ground
local_transform.r = gymapi.Quat(0, 0, 0, 1)
self.gym.set_camera_local_transform(env, camera_handle, local_transform)
self.camera_handles.append(camera_handle)
def get_camera_observations(self):
"""Get camera observations from all environments"""
camera_obs = []
for i, camera_handle in enumerate(self.camera_handles):
# Get camera tensor
camera_tensor = self.gym.get_camera_image_gpu_tensor(
self.sim, self.envs[i], camera_handle, gymapi.IMAGE_COLOR
)
# Convert to PyTorch tensor
torch_camera_tensor = gymtorch.wrap_tensor(camera_tensor)
camera_obs.append(torch_camera_tensor)
return torch.stack(camera_obs)
Training with Isaac Gym
PPO Implementation for Isaac Gym
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
class PPOActorCritic(nn.Module):
def __init__(self, obs_dim, action_dim, hidden_dim=512):
super(PPOActorCritic, self).__init__()
# Shared feature extractor
self.feature_extractor = nn.Sequential(
nn.Linear(obs_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, hidden_dim),
nn.ReLU()
)
# Actor (policy network)
self.actor_mean = nn.Linear(hidden_dim, action_dim)
self.actor_logstd = nn.Parameter(torch.zeros(action_dim))
# Critic (value network)
self.critic = nn.Linear(hidden_dim, 1)
def forward(self, obs):
features = self.feature_extractor(obs)
# Actor
action_mean = self.actor_mean(features)
action_logstd = self.actor_logstd.expand_as(action_mean)
action_std = torch.exp(action_logstd)
# Critic
value = self.critic(features)
return action_mean, action_std, value
def get_action_and_value(self, obs, action=None):
action_mean, action_std, value = self.forward(obs)
dist = torch.distributions.Normal(action_mean, action_std)
if action is None:
action = dist.sample()
log_prob = dist.log_prob(action).sum(1, keepdim=True)
entropy = dist.entropy().sum(1, keepdim=True)
return action, log_prob, entropy, value
class PPOAgent:
def __init__(self, obs_dim, action_dim, lr=3e-4, clip_eps=0.2):
self.actor_critic = PPOActorCritic(obs_dim, action_dim).cuda()
self.optimizer = optim.Adam(self.actor_critic.parameters(), lr=lr)
self.clip_eps = clip_eps
self.entropy_coef = 0.01
self.value_loss_coef = 0.5
def update(self, obs, actions, log_probs, returns, advantages):
# Convert to tensors
obs = torch.FloatTensor(obs).cuda()
actions = torch.FloatTensor(actions).cuda()
old_log_probs = torch.FloatTensor(log_probs).cuda()
returns = torch.FloatTensor(returns).cuda().unsqueeze(1)
advantages = torch.FloatTensor(advantages).cuda().unsqueeze(1)
# Normalize advantages
advantages = (advantages - advantages.mean()) / (advantages.std() + 1e-8)
# Get new action and value
_, new_log_probs, entropy, new_values = self.actor_critic.get_action_and_value(obs, actions)
# Calculate ratios
ratios = torch.exp(new_log_probs - old_log_probs)
# PPO surrogate losses
surr1 = ratios * advantages
surr2 = torch.clamp(ratings, 1 - self.clip_eps, 1 + self.clip_eps) * advantages
actor_loss = -torch.min(surr1, surr2).mean()
# Value loss
value_loss = (new_values - returns).pow(2).mean()
# Total loss
loss = actor_loss + self.value_loss_coef * value_loss - self.entropy_coef * entropy.mean()
# Update network
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
return actor_loss.item(), value_loss.item(), entropy.mean().item()
Training Loop
def train_isaac_gym_agent():
"""Complete training loop for Isaac Gym agent"""
# Initialize environment
env = BipedalWalkerEnv(num_envs=4096)
# Initialize agent
agent = PPOAgent(obs_dim=env.num_obs, action_dim=env.num_actions)
# Training parameters
num_iterations = 10000
num_steps = 32 # Steps per update
gamma = 0.99
gae_lambda = 0.95
# Initialize buffers
obs = env.reset()
episode_rewards = torch.zeros(env.num_envs, device='cuda')
episode_lengths = torch.zeros(env.num_envs, device='cuda')
episode_count = torch.zeros(env.num_envs, device='cuda')
for iteration in range(num_iterations):
# Collect trajectories
obs_buf = torch.zeros((num_steps, env.num_envs, env.num_obs), device='cuda')
action_buf = torch.zeros((num_steps, env.num_envs, env.num_actions), device='cuda')
log_prob_buf = torch.zeros((num_steps, env.num_envs, 1), device='cuda')
reward_buf = torch.zeros((num_steps, env.num_envs), device='cuda')
done_buf = torch.zeros((num_steps, env.num_envs), device='cuda')
value_buf = torch.zeros((num_steps, env.num_envs), device='cuda')
for step in range(num_steps):
# Get action from agent
with torch.no_grad():
action, log_prob, entropy, value = agent.actor_critic.get_action_and_value(obs)
# Store data
obs_buf[step] = obs
action_buf[step] = action
log_prob_buf[step] = log_prob
value_buf[step] = value.squeeze(1)
# Step environment
obs, reward, done, info = env.step(action.cpu().numpy())
reward_buf[step] = reward
done_buf[step] = done
# Update episode statistics
episode_rewards += reward
episode_lengths += 1
# Reset episode statistics for done environments
episode_count += done
episode_rewards = episode_rewards * (1 - done)
episode_lengths = episode_lengths * (1 - done)
# Calculate returns and advantages using GAE
with torch.no_grad():
next_value = agent.actor_critic.get_action_and_value(obs)[3].squeeze(1)
returns = torch.zeros_like(reward_buf)
advantages = torch.zeros_like(reward_buf)
lastgaelam = 0
for t in reversed(range(num_steps)):
if t == num_steps - 1:
nextnonterminal = 1.0 - done_buf[t]
nextvalues = next_value
else:
nextnonterminal = 1.0 - done_buf[t+1]
nextvalues = value_buf[t+1]
delta = reward_buf[t] + gamma * nextvalues * nextnonterminal - value_buf[t]
advantages[t] = lastgaelam = delta + gamma * gae_lambda * nextnonterminal * lastgaelam
returns = advantages + value_buf
# Flatten buffers for training
b_obs = obs_buf.reshape((-1,) + (env.num_obs,))
b_action = action_buf.reshape((-1,) + (env.num_actions,))
b_log_prob = log_prob_buf.reshape(-1, 1)
b_returns = returns.reshape(-1)
b_advantages = advantages.reshape(-1)
# Update agent
actor_loss, critic_loss, entropy = agent.update(
b_obs, b_action, b_log_prob, b_returns, b_advantages
)
# Log progress
if iteration % 10 == 0:
avg_reward = episode_rewards.mean().item()
avg_length = episode_lengths.mean().item()
avg_episodes = episode_count.mean().item()
print(f"Iteration {iteration}: "
f"Reward={avg_reward:.2f}, "
f"Length={avg_length:.2f}, "
f"Episodes={avg_episodes:.2f}, "
f"Actor Loss={actor_loss:.4f}, "
f"Critic Loss={critic_loss:.4f}")
return agent
Deployment to Real Robots
Transfer from Simulation to Reality
def deploy_to_real_robot(agent, real_robot_interface):
"""Deploy trained Isaac Gym policy to real robot"""
# Set agent to evaluation mode
agent.actor_critic.eval()
# Initialize real robot
real_robot_interface.initialize()
# Main control loop
try:
obs = real_robot_interface.get_observation()
while True:
# Preprocess observation (may need normalization)
obs_tensor = torch.FloatTensor(obs).unsqueeze(0).cuda()
# Get action from trained policy
with torch.no_grad():
action_mean, action_std, value = agent.actor_critic(obs_tensor)
action = torch.tanh(action_mean).cpu().numpy()[0] # Apply tanh and convert to numpy
# Scale action to robot's action space
scaled_action = scale_action_to_robot(action)
# Send action to robot
real_robot_interface.send_action(scaled_action)
# Get next observation
obs = real_robot_interface.get_observation()
# Check for termination conditions
if real_robot_interface.should_terminate():
break
except KeyboardInterrupt:
print("Deployment interrupted by user")
finally:
real_robot_interface.shutdown()
def scale_action_to_robot(robot_action):
"""Scale normalized action (-1 to 1) to robot-specific ranges"""
# Define robot-specific joint limits (example)
joint_limits = {
'hip': (-0.5, 0.5),
'knee': (0, 1.5),
'ankle': (-0.3, 0.3)
}
scaled_action = np.copy(robot_action)
# Scale each joint based on its specific limits
for i, joint_name in enumerate(joint_limits.keys()):
min_val, max_val = joint_limits[joint_name]
# From [-1, 1] to [min_val, max_val]
scaled_action[i] = min_val + (robot_action[i] + 1) * (max_val - min_val) / 2
return scaled_action
Safe Deployment Strategies
class SafeDeploymentManager:
def __init__(self, real_robot_interface):
self.robot = real_robot_interface
self.safety_monitor = SafetyMonitor()
self.fallback_controller = FallbackController()
def deploy_with_safety(self, trained_policy):
"""Deploy policy with safety checks"""
print("Starting safe deployment...")
# Initialize safety systems
self.safety_monitor.start_monitoring()
self.fallback_controller.activate()
try:
obs = self.robot.get_observation()
while True:
# Check safety conditions
if not self.safety_monitor.is_safe():
print("Safety violation detected! Activating fallback...")
self.fallback_controller.take_control()
continue
# Get policy action
action = trained_policy.get_action(obs)
# Verify action is within safe limits
safe_action = self.safety_monitor.clamp_action(action)
# Send to robot
self.robot.send_action(safe_action)
# Get next observation
obs = self.robot.get_observation()
# Check for termination
if self.robot.emergency_stop_requested():
break
except Exception as e:
print(f"Error during deployment: {e}")
self.fallback_controller.emergency_stop()
finally:
self.safety_monitor.stop_monitoring()
self.fallback_controller.deactivate()
Best Practices and Optimization
Performance Optimization
def optimize_isaac_gym_training():
"""Best practices for optimizing Isaac Gym training"""
# 1. Optimize simulation parameters
sim_params = gymapi.SimParams()
sim_params.up_axis = gymapi.UP_AXIS_Z
sim_params.gravity = gymapi.Vec3(0.0, 0.0, -9.81)
# Reduce solver iterations if possible
sim_params.physx.num_position_iterations = 4 # Start with lower value
sim_params.physx.num_velocity_iterations = 1
# Use GPU for physics
sim_params.physx.use_gpu = True
sim_params.physx.max_gpu_contact_pairs = 2**23
# 2. Optimize environment spacing
spacing = 2.0 # Minimize space while avoiding interference
# 3. Batch operations when possible
def batch_reset(env_ids):
"""Reset multiple environments efficiently"""
# Set all reset flags at once
reset_tensor = torch.zeros(len(env_ids), device='cuda', dtype=torch.bool)
return reset_tensor
# 4. Use appropriate network architecture
# For high-dimensional observations, consider using CNNs for vision
# For joint-based observations, MLPs often work well
Memory Management
class EfficientMemoryManager:
def __init__(self, max_memory=1000000):
self.max_memory = max_memory
self.replay_buffer = deque(maxlen=max_memory)
# Pre-allocate tensors to avoid memory fragmentation
self.obs_tensor = torch.empty((1000, obs_dim), device='cuda')
self.action_tensor = torch.empty((1000, action_dim), device='cuda')
def add_experience(self, obs, action, reward, next_obs, done):
"""Add experience to replay buffer efficiently"""
self.replay_buffer.append((obs, action, reward, next_obs, done))
def sample_batch(self, batch_size):
"""Sample batch with efficient tensor operations"""
batch = random.sample(self.replay_buffer, batch_size)
# Convert to pre-allocated tensors to avoid memory allocation
obs_batch = torch.stack([exp[0] for exp in batch]).cuda()
action_batch = torch.stack([exp[1] for exp in batch]).cuda()
reward_batch = torch.tensor([exp[2] for exp in batch], device='cuda').float()
next_obs_batch = torch.stack([exp[3] for exp in batch]).cuda()
done_batch = torch.tensor([exp[4] for exp in batch], device='cuda').float()
return obs_batch, action_batch, reward_batch, next_obs_batch, done_batch
Troubleshooting Common Issues
Physics Instability
# Issue: Robot joints becoming unstable
# Solution: Adjust physics parameters
def stabilize_physics():
"""Stabilize physics simulation"""
# Reduce simulation time step
sim_params = gymapi.SimParams()
sim_params.dt = 1.0/120.0 # Use smaller time step
# Increase solver iterations for better accuracy
sim_params.physx.num_position_iterations = 8
sim_params.physx.num_velocity_iterations = 2
# Add joint damping to reduce oscillations
dof_props = gym.get_asset_dof_properties(sim, asset)
for i in range(len(dof_props.damping)):
dof_props.damping[i] = 50.0 # Increase damping
GPU Memory Issues
def manage_gpu_memory():
"""Manage GPU memory for large-scale training"""
# Reduce number of environments if hitting memory limits
max_envs = torch.cuda.get_device_properties(0).total_memory // (256 * 1024 * 1024) # Approximate
num_envs = min(max_envs, desired_num_envs)
# Use mixed precision training
from torch.cuda.amp import autocast, GradScaler
scaler = GradScaler()
# Clear GPU cache periodically
if iteration % 100 == 0:
torch.cuda.empty_cache()
Summary
NVIDIA Isaac Gym provides a powerful platform for training reinforcement learning agents for robotic tasks. Its GPU acceleration enables parallel simulation of thousands of environments, dramatically reducing training time for complex behaviors like humanoid locomotion. The combination of realistic physics simulation, flexible environment creation, and integration with popular RL frameworks makes Isaac Gym an ideal choice for developing AI brains for humanoid robots. Success requires careful attention to simulation design, reward engineering, and safe deployment strategies to bridge the sim-to-real gap.